23 research outputs found
Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells
Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/ Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed
Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism
The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases
Diabetes Alters KIF1A and KIF5B Motor Proteins in the Hippocampus
Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration) on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM) or mannitol (osmotic control; 25 mM plus 25 mM glucose) for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal neurons, which may lead to changes in synaptic proteins, thus contributing to changes in hippocampal neurotransmission and to cognitive and memory impairments
Levels of kinesin light chain and dynein intermediate chain are reduced in the frontal cortex in Alzheimer's disease: implications for axoplasmic transport.
Fast anterograde and retrograde axoplasmic transports in neurons rely on the activity of molecular motors and are critical for maintenance of neuronal and synaptic functions. Disturbances of axoplasmic transport have been identified in Alzheimer's disease and in animal models of this disease, but their mechanisms are not well understood. In this study we have investigated the distribution and the level of expression of kinesin light chains (KLCs) (responsible for binding of cargos during anterograde transport) and of dynein intermediate chain (DIC) (a component of the dynein complex during retrograde transport) in frontal cortex and cerebellar cortex of control subjects and Alzheimer's disease patients. By immunoblotting, we found a significant decrease in the levels of expression of KLC1 and 2 and DIC in the frontal cortex, but not in the cerebellar cortex, of Alzheimer's disease patients. A significant decrease in the levels of synaptophysin and of tubulin-β3 proteins, two neuronal markers, was also observed. KLC1 and DIC immunoreactivities did not co-localize with neurofibrillary tangles. The mean mRNA levels of KLC1, 2 and DIC were not significantly different between controls and AD patients. In SH-SY5Y neural cells, GSK-3β phosphorylated KLC1, a change associated to decreased association of KLC1 with its cargoes. Increased levels of active GSK-3β and of phosphorylated KLC1 were also observed in AD frontal cortex. We suggest that reduction of KLCs and DIC proteins in AD cortex results from both reduced expression and neuronal loss, and that these reductions and GSK-3β-mediated phosphorylation of KLC1 contribute to disturbances of axoplasmic flows and synaptic integrity in Alzheimer's disease.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors
Dopamine (DA) D2 receptors expressed in DA neurons (D 2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D 2 autoreceptors to DA-mediated behaviors. We found that midbrain DA neurons from mice deficient in D2 autoreceptors (Drd2 loxP/loxP; Dat+/IREScre, referred to as autoDrd2KO mice) lacked DA-mediated somatodendritic synaptic responses and inhibition of DA release. AutoDrd2KO mice displayed elevated DA synthesis and release, hyperlocomotion and supersensitivity to the psychomotor effects of cocaine. The mice also exhibited increased place preference for cocaine and enhanced motivation for food reward. Our results highlight the importance of D 2 autoreceptors in the regulation of DA neurotransmission and demonstrate that D2 autoreceptors are important for normal motor function, food-seeking behavior, and sensitivity to the locomotor and rewarding properties of cocaine.Fil: Bello Gay, Estefania Pilar. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Instituto de Investigaciones en IngenierÃa Genética y BiologÃa Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Mateo, Yolanda. National Institutes of Health; Estados UnidosFil: Gelman, Diego Matias. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Instituto de Investigaciones en IngenierÃa Genética y BiologÃa Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Noain, Daniela Maria Clara. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Instituto de Investigaciones en IngenierÃa Genética y BiologÃa Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Shin, Jung H.. National Institutes of Health; Estados UnidosFil: Low, Malcolm J.. University of Michigan Medical School; Estados UnidosFil: Alvarez, Veronica A.. National Institutes of Health; Estados UnidosFil: Lovinger, David M.. National Institutes of Health; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Instituto de Investigaciones en IngenierÃa Genética y BiologÃa Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin