120 research outputs found

    Entropy of gas and dark matter in galaxy clusters

    Get PDF
    On the basis of a large scale 'adiabatic', namely non-radiative and non-dissipative, cosmological smooth particle hydrodynamic simulation we compare the entropy profiles of the gas and the dark matter (DM) in galaxy clusters. The quantity K_g = T_g \rho_g^{-2/3} provides a measure for the entropy of the intra-cluster gas. By analogy with the thermodynamic variables of the gas the velocity dispersion of the DM is associated with a formal temperature and thereby K_DM = \sigma_DM^2 \rho_DM^{-2/3} is defined. This DM entropy is related to the DM phase space density by K_DM \propto Q_DM^{-2/3}. In accord with other studies the DM phase space density follows a power law behaviour, Q_DM \propto r^{-1.82}, which corresponds to K_DM \propto r^{1.21}. The simulated intra-cluster gas has a flat entropy core within (0.8 \pm 0.4) R_s, where R_s is the NFW scale radius. The outer profile follows the DM behaviour, K_g \propto r^{1.21}, in close agreement with X-ray observations. Upon scaling the DM and gas densities by their mean cosmological values we find that outside the entropy core a constant ratio of K_g / K_{DM} = 0.71 \pm 0.18 prevails. By extending the definition of the gas temperature to include also the bulk kinetic energy the ratio of the DM and gas extended entropy is found to be unity for r > 0.8 R_s. The constant ratio of the gas thermal entropy to that of the DM implies that observations of the intra-cluster gas can provide an almost direct probe of the DM.Comment: 7 pages, 8 figures, accepted for publication in MNRAS, web page of the The Marenostrum Numerical Cosmology Project : http://astro.ft.uam.es/~marenostrum

    Detection of the large scale alignment of massive galaxies at z~0.6

    Full text link
    We report on the detection of the alignment between galaxies and large-scale structure at z~0.6 based on the CMASS galaxy sample from the Baryon Oscillation Spectroscopy Survey data release 9. We use two statistics to quantify the alignment signal: 1) the alignment two-point correlation function which probes the dependence of galaxy clustering at a given separation in redshift space on the projected angle (theta_p) between the orientation of galaxies and the line connecting to other galaxies, and 2) the cos(2theta)-statistic which estimates the average of cos(2theta_p) for all correlated pairs at given separation. We find significant alignment signal out to about 70 Mpc/h in both statistics. Applications of the same statistics to dark matter halos of mass above 10^12 M_sun/h in a large cosmological simulation show similar scale-dependent alignment signals to the observation, but with higher amplitudes at all scales probed. We show that this discrepancy may be partially explained by a misalignment angle between central galaxies and their host halos, though detailed modeling is needed in order to better understand the link between the orientations of galaxies and host halos. In addition, we find systematic trends of the alignment statistics with the stellar mass of the CMASS galaxies, in the sense that more massive galaxies are more strongly aligned with the large-scale structure.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter

    The impact of environment on the dynamical structure of satellite systems

    Full text link
    We examine the effects of environment on the dynamical structure of satellite systems based on the Millennium--II Simulation. Satellite halos are defined as sub--halos within the virial radius of a host halo. The satellite sample is restricted to those sub--halos which showed a maximum circular velocity above 30 km/s at the time of accretion. Host halo masses range from 10^11 to 10^14 Msol/h. We compute the satellites' average accretion redshift, z_acc, velocity dispersion, sigma, and velocity anisotropy parameter, beta, utilising stacked satellite samples of equal mass hosts at similar background densities. The main results are: (1) On average satellites within hosts in high density environments are accreted earlier (Delta z~ 0.1$) compared to their counterparts at low densities. For host masses above 5 times10^13 Msol/h this trend weakens and may reverse for higher host masses; (2) The velocity dispersion of satellites in low density environments follows that of the host, i.e. no velocity bias is observed for host halos at low densities independent of host mass. However, for low mass hosts in high density environments the velocity dispersion of the satellites can be up to ~30% larger than that of the host halo, i.e. the satellites are dynamically hotter than their host halos. (3) The anisotropy parameter depends on host mass and environment. Satellites of massive hosts show more radially biased velocity distributions. Moreover in low density environments satellites have more radially biased velocities (Delta beta > 0.1) compared to their counterparts in high density environments. We believe that our approach allows to predict a similar behaviour for observed satellite galaxy systems.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    The velocity--shape alignment of clusters and the kinetic Sunyaev--Zeldovich effect

    Full text link
    We use the Millennium simulation to probe the correlation between cluster velocities and their shapes and the consequences for measurements of the kinetic Sunyaev-Zeldovich (kSZ) effect. Halos are generally prolate ellipsoids with orientations that are correlated with those of nearby halos. We measure the mean streaming velocities of halos along the lines that separate them, demonstrating that the peculiar velocities and the long axes of halos tend to be somewhat aligned, especially for the most massive halos. Since the kSZ effect is proportional to the line-of-sight velocity and the optical depth of the cluster, the alignment results in a strong enhancement of the kSZ signature in clusters moving along the line of sight. This effect has not been taken into account in many analyses of kSZ signatures.Comment: 5 pages, 5 figures, 1 table; accepted for publication in MNRA

    Baryonically Closed Galaxy Groups

    Get PDF
    Elliptical galaxies and their groups having the largest L_x/L_B lie close to the locus in the L_x,L_B diagram expected for closed systems with baryon fractions equal to the cosmic mean value, f_b = 0.16. The estimated baryon fractions for several of these galaxies/groups are also close to 0.16 when the gas density is extrapolated to the virial radius. Evidently they are the least massive baryonically closed systems. Gas retention in these groups implies that non-gravitational heating cannot exceed about 1 keV per particle, consistent with the heating required to produce the deviation of groups from the L_x - T correlation for more massive clusters. Isolated galaxies/groups with X-ray luminosities significantly lower than baryonically closed groups may have undermassive dark halos, overactive central AGNs, or higher star formation efficiencies. The virial mass and hot gas temperatures of nearly or completely closed groups correlate with the group X-ray luminosities and the optical luminosities of the group-centered elliptical galaxy, an expected consequence of their merging history. The ratio of halo mass to the mass of the central galaxy for X-ray luminous galaxy/groups is about 80.Comment: 7 pages; Accepted by ApJ Letter

    Clustering of HI galaxies in HIPASS and ALFALFA

    Full text link
    We investigate the clustering of HI-selected galaxies in the ALFALFA survey and compare results with those obtained for HIPASS. Measurements of the angular correlation function and the inferred 3D-clustering are compared with results from direct spatial-correlation measurements. We are able to measure clustering on smaller angular scales and for galaxies with lower HI masses than was previously possible. We calculate the expected clustering of dark matter using the redshift distributions of HIPASS and ALFALFA and show that the ALFALFA sample is somewhat more anti-biased with respect to dark matter than the HIPASS sample.Comment: 5 Pages 4 Figures accepted by MNRA

    The Shape of Dark Matter Halos: Dependence on Mass, Redshift, Radius, and Formation

    Full text link
    Using six high resolution dissipationless simulations with a varying box size in a flat LCDM universe, we study the mass and redshift dependence of dark matter halo shapes for M_vir = 9.0e11 - 2.0e14, over the redshift range z=0-3, and for two values of sigma_8=0.75 and 0.9. Remarkably, we find that the redshift, mass, and sigma_8 dependence of the mean smallest-to-largest axis ratio of halos is well described by the simple power-law relation = (0.54 +- 0.02)(M_vir/M_*)^(-0.050 +- 0.003), where s is measured at 0.3 R_vir and the z and sigma_8 dependences are governed by the characteristic nonlinear mass, M_*=M_*(z,sigma_8). We find that the scatter about the mean s is well described by a Gaussian with sigma ~ 0.1, for all masses and redshifts. We compare our results to a variety of previous works on halo shapes and find that reported differences between studies are primarily explained by differences in their methodologies. We address the evolutionary aspects of individual halo shapes by following the shapes of the halos through ~100 snapshots in time. We determine the formation scalefactor a_c as defined by Wechsler et al. (2002) and find that it can be related to the halo shape at z = 0 and its evolution over time.Comment: 18 pages, 21 figures, submitted to MNRA
    • …
    corecore