97 research outputs found

    Pion irradiation studies of CVD diamond detectors

    Get PDF
    We report here the results of a test to ascertain the radiation hardness properties of CVD diamond detectors to 300 MeV/c pions. In this test, CVD diamond detectors were exposed to 8 \times 10^{13} pions per cm^2 using the high intensity pion beam at the Paul Scherrer Institut. For comparison, silicon photodiodes were exposed to similar fluences at the same time. The measurements and the dosimetry during the irradiations are described herein. As expected, the silicon devices degraded. The diamond devices showed no degradation in collected charge and no increase in leakage current

    Construction, assembly and tests of the ATLAS electromagnetic end-cap calorimeters

    Get PDF
    The construction and the assembly of the two end-caps of the ATLAS liquid argon electromagnetic calorimeter as well as their test and qualification programs are described. The work described here started at the beginning of 2001 and lasted for approximately three years. The results of the qualification tests performed before installation in the LHC ATLAS pit are given. The detectors are now installed in the ATLAS cavern, full of liquid argon and being commissioned. The complete detectors coverage is powered with high voltage and readout

    Development of CVD diamond radiation detectors

    Get PDF
    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, d=μEτd=\mu E \tau, the average distance electron-hole pairs move apart under the influence of an electric field, where μ\mu is the sum of carrier mo bilities, EE is the applied electric field, and τ\tau is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from \sim 75 μ\mum to over 200 μ\mu m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors were exposed to large fluences of pions, protons and neutrons to establish their radiation hardness properties. The results of these tests and their correlati on with the characterization studies are presented

    Proton Irradiation of CVD Diamond Detectors for High Luminosity Experiments at the LHC

    Get PDF
    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/cc and 500~MeV protons up to a fluence of 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1 times1015 p/cm21\ times 10^{15}~p/{\rm cm^2} and decreases by \approx40~\% at 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radiation hard to 24~GeV/cc and 500~MeV protons up to at least 1×1015 p/cm21\times 10^{15}~p/{\rm cm^2} without signal loss

    Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    No full text
    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/cc and 500~MeV protons up to a fluence of 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1 times1015 p/cm21\ times 10^{15}~p/{\rm cm^2} and decreases by \approx40~\% at 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radiation hard to 24~GeV/cc and 500~MeV protons up to at least 1×1015 p/cm21\times 10^{15}~p/{\rm cm^2} without signal loss
    corecore