242 research outputs found

    New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel

    Get PDF
    By 2020, the global health community aims to control and eliminate human helminthiases, including schistosomiasis in selected African countries, principally by preventive chemotherapy (PCT) through mass drug administration (MDA) of anthelminthics. Quantitative monitoring of anthelminthic responses is crucial for promptly detecting changes in efficacy, potentially indicative of emerging drug resistance. Statistical models offer a powerful means to delineate and compare efficacy among individuals, among groups of individuals and among populations.; We illustrate a variety of statistical frameworks that offer different levels of inference by analysing data from nine previous studies on egg counts collected from African children before and after administration of praziquantel.; We quantify responses to praziquantel as egg reduction rates (ERRs), using different frameworks to estimate ERRs among population strata, as average responses, and within strata, as individual responses. We compare our model-based average ERRs to corresponding model-free estimates, using as reference the World Health Organization (WHO) 90 % threshold of optimal efficacy. We estimate distributions of individual responses and summarize the variation among these responses as the fraction of ERRs falling below the WHO threshold.; Generic models for evaluating responses to anthelminthics deepen our understanding of variation among populations, sub-populations and individuals. We discuss the future application of statistical modelling approaches for monitoring and evaluation of PCT programmes targeting human helminthiases in the context of the WHO 2020 control and elimination goals

    Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis

    Get PDF
    Accumulation of M2 macrophages in the liver, within the context of a strong Th2 response, is a hallmark of infection with the parasitic helminth, Schistosoma mansoni, but the origin of these cells is unclear. To explore this, we examined the relatedness of macrophages to monocytes in this setting. Our data show that both monocyte-derived and resident macrophages are engaged in the response to infection. Infection caused CCR2-dependent increases in numbers of Ly6Chi monocytes in blood and liver and of CX3CR1+ macrophages in diseased liver. Ly6Chi monocytes recovered from liver had the potential to differentiate into macrophages when cultured with M-CSF. Using pulse chase BrdU labeling, we found that most hepatic macrophages in infected mice arose from monocytes. Consistent with this, deletion of monocytes led to the loss of a subpopulation of hepatic CD11chi macrophages that was present in infected but not naïve mice. This was accompanied by a reduction in the size of egg-associated granulomas and significantly exacerbated disease. In addition to the involvement of monocytes and monocyte-derived macrophages in hepatic inflammation due to infection, we observed increased incorporation of BrdU and expression of Ki67 and MHC II in resident macrophages, indicating that these cells are participating in the response. Expression of both M2 and M1 marker genes was increased in liver from infected vs. naive mice. The M2 fingerprint in the liver was not accounted for by a single cell type, but rather reflected expression of M2 genes by various cells including macrophages, neutrophils, eosinophils and monocytes. Our data point to monocyte recruitment as the dominant process for increasing macrophage cell numbers in the liver during schistosomiasis

    Autoantibodies to Agrin in Myasthenia Gravis Patients

    Get PDF
    To determine if patients with myasthenia gravis (MG) have antibodies to agrin, a proteoglycan released by motor neurons and is critical for neuromuscular junction (NMJ) formation, we collected serum samples from 93 patients with MG with known status of antibodies to acetylcholine receptor (AChR), muscle specific kinase (MuSK) and lipoprotein-related 4 (LRP4) and samples from control subjects (healthy individuals and individuals with other diseases). Sera were assayed for antibodies to agrin. We found antibodies to agrin in 7 serum samples of MG patients. None of the 25 healthy controls and none of the 55 control neurological patients had agrin antibodies. Two of the four triple negative MG patients (i.e., no detectable AChR, MuSK or LRP4 antibodies, AChR-/MuSK-/LRP4-) had antibodies against agrin. In addition, agrin antibodies were detected in 5 out of 83 AChR+/MuSK-/LRP4- patients but were not found in the 6 patients with MuSK antibodies (AChR-/MuSK+/LRP4-). Sera from MG patients with agrin antibodies were able to recognize recombinant agrin in conditioned media and in transfected HEK293 cells. These sera also inhibited the agrin-induced MuSK phosphorylation and AChR clustering in muscle cells. Together, these observations indicate that agrin is another autoantigen in patients with MG and agrin autoantibodies may be pathogenic through inhibition of agrin/LRP4/MuSK signaling at the NMJ

    IL-4Rα-Independent Expression of Mannose Receptor and Ym1 by Macrophages Depends on their IL-10 Responsiveness

    Get PDF
    IL-4Rα-dependent responses are essential for granuloma formation and host survival during acute schistosomiasis. Previously, we demonstrated that mice deficient for macrophage-specific IL-4Rα (LysMcreIl4ra−/lox) developed increased hepatotoxicity and gut inflammation; whereas inflammation was restricted to the liver of mice lacking T cell-specific IL-4Rα expression (iLckcreIl4ra−/lox). In the study presented here we further investigated their role in liver granulomatous inflammation. Frequencies and numbers of macrophage, lymphocyte or granulocyte populations, as well as Th1/Th2 cytokine responses were similar in Schistosoma mansoni-infected LysMcreIl4ra−/lox liver granulomas, when compared to Il4ra−/lox control mice. In contrast, a shift to Th1 responses with high IFN-γ and low IL-4, IL-10 and IL-13 was observed in the severely disrupted granulomas of iLckcreIl4ra−/lox and Il4ra−/− mice. As expected, alternative macrophage activation was reduced in both LysMcreIl4ra−/lox and iLckcreIl4ra−/lox granulomas with low arginase 1 and heightened nitric oxide synthase RNA expression in granuloma macrophages of both mouse strains. Interestingly, a discrete subpopulation of SSChighCD11b+I-A/I-EhighCD204+ macrophages retained expression of mannose receptor (MMR) and Ym1 in LysMcreIl4ra−/lox but not in iLckcreIl4ra−/lox granulomas. While aaMφ were in close proximity to the parasite eggs in Il4ra−/lox control mice, MMR+Ym1+ macrophages in LysMcreIl4ra−/lox mice were restricted to the periphery of the granuloma, indicating that they might have different functions. In vivo IL-10 neutralisation resulted in the disappearance of MMR+Ym1+ macrophages in LysMcreIl4ra−/lox mice. Together, these results show that IL-4Rα-responsive T cells are essential to drive alternative macrophage activation and to control granulomatous inflammation in the liver. The data further suggest that in the absence of macrophage-specific IL-4Rα signalling, IL-10 is able to drive mannose receptor- and Ym1-positive macrophages, associated with control of hepatic granulomatous inflammation

    Thioredoxin Glutathione Reductase as a Novel Drug Target: Evidence from Schistosoma japonicum

    Get PDF
    Background: Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia. Methods and Findings: After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice. Conclusions: Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate Trx

    IL-10R Blockade during Chronic Schistosomiasis Mansoni Results in the Loss of B Cells from the Liver and the Development of Severe Pulmonary Disease

    Get PDF
    In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection

    Ultra-Low Energy Calibration of LUX Detector using 127^{127}Xe Electron Capture

    Get PDF
    We report an absolute calibration of the ionization yields(\textit{Q_y}) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy 127^{127}Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with 127^{127}I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ\textit{in situ} measurements that have been explored in liquid xenon

    Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis

    Get PDF
    Background: Patellofemoral pain is considered one of the most common forms of knee pain, affecting adults, adolescents, and physically active populations. Inconsistencies in reported incidence and prevalence exist and in relation to the allocation of healthcare and research funding, there is a clear need to accurately understand the epidemiology of patellofemoral pain. Methods: An electronic database search was conducted, as well as grey literature databases, from inception to June 2017. Two authors independently selected studies, extracted data and appraised methodological quality. If heterogeneous, data were analysed descriptively. Where studies were homogeneous, data were pooled through a meta-analysis. Results: 23 studies were included. Annual prevalence for patellofemoral pain in the general population was reported as 22.7%, and adolescents as 28.9%. Incidence rates in military recruits ranged from 9.7 – 571.4/1,000 person-years, amateur runners in the general population at 1080.5/1,000 person-years and adolescents amateur athletes 5.1% - 14.9% over 1 season. One study reported point prevalence within military populations as 13.5%. The pooled estimate for point prevalence in adolescents was 7.2% (95% Confidence Interval: 6.3% - 8.3%), and in female only adolescent athletes was 22.7% (95% Confidence Interval 17.4% - 28.0%). Conclusion: This review demonstrates high incidence and prevalence levels for patellofemoral pain. Within the context of this, and poor long term prognosis and high disability levels, PFP should be an urgent research priority
    • …
    corecore