1,647 research outputs found

    CIS-lunar space infrastructure lunar technologies: Executive summary

    Get PDF
    Technologies necessary for the creation of a cis-Lunar infrastructure, namely: (1) automation and robotics; (2) life support systems; (3) fluid management; (4) propulsion; and (5) rotating technologies, are explored. The technological focal point is on the development of automated and robotic systems for the implementation of a Lunar Oasis produced by Automation and Robotics (LOAR). Under direction from the NASA Office of Exploration, automation and robotics were extensively utilized as an initiating stage in the return to the Moon. A pair of autonomous rovers, modular in design and built from interchangeable and specialized components, is proposed. Utilizing a buddy system, these rovers will be able to support each other and to enhance their individual capabilities. One rover primarily explores and maps while the second rover tests the feasibility of various materials-processing techniques. The automated missions emphasize availability and potential uses of Lunar resources, and the deployment and operations of the LOAR program. An experimental bio-volume is put into place as the precursor to a Lunar environmentally controlled life support system. The bio-volume will determine the reproduction, growth and production characteristics of various life forms housed on the Lunar surface. Physicochemical regenerative technologies and stored resources will be used to buffer biological disturbances of the bio-volume environment. The in situ Lunar resources will be both tested and used within this bio-volume. Second phase development on the Lunar surface calls for manned operations. Repairs and re-configuration of the initial framework will ensue. An autonomously-initiated manned Lunar oasis can become an essential component of the United States space program

    Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations

    Full text link
    We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alcohols, and dimethylsulfoxide (DMSO). The sugar molecules tend to stabilize the structure of the bilayer as they bridge adjacent lipid headgroups. They do not strongly change the structure of the bilayer. Alcohols and DMSO destabilize the bilayer as they increase its area per molecule in the bilayer plane and decrease the order parameter. Alcohols have a stronger detrimental effect than DMSO. The observables which we compare are the area per molecule in the plane of the bilayer, the membrane thickness, and the NMR order parameter of DPPC hydrocarbon tails. The area per molecule and the order parameter are very well correlated whereas the bilayer thickness is not necessarily correlated with them.Comment: 8 pages, 3 figures, accepted to Fluid Phase Equilibri

    PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK

    Get PDF
    The Midwest Roadside Safety Facility was contracted by Will Stein of the Iowa Department of Transportation to conduct dynamic bogie testing of a recyclable rubber guardrail spacer block manufactured by Welch Products, Inc. The scope of the work included the setup of both a standard, wood guardrail post blockout and the Welch Products recycled rubber blockout on a standard W150x13.5 steel post, as well as two component tests using a bogie vehicle. The bogie tests were conducted in accordance with previously accepted procedures to evaluate the performance of guardrail post blockouts made of non-standard materials

    PERFORMANCE ANALYSIS OF WELCH PRODUCTS RECYCLED RUBBER SPACER BLOCK

    Get PDF
    The Midwest Roadside Safety Facility was contracted by Will Stein of the Iowa Department of Transportation to conduct dynamic bogie testing of a recyclable rubber guardrail spacer block manufactured by Welch Products, Inc. The scope of the work included the setup of both a standard, wood guardrail post blockout and the Welch Products recycled rubber blockout on a standard W150x13.5 steel post, as well as two component tests using a bogie vehicle. The bogie tests were conducted in accordance with previously accepted procedures to evaluate the performance of guardrail post blockouts made of non-standard materials

    Pair distribution function and structure factor of spherical particles

    Full text link
    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed.Comment: 7 pages, 6 figure

    Application of neural networks to unsteady aerodynamic control

    Get PDF
    The problem under consideration in this viewgraph presentation is to understand, predict, and control the fluid mechanics of dynamic maneuvers, unsteady boundary layers, and vortex dominated flows. One solution is the application of neural networks demonstrating closed-loop control. Neural networks offer unique opportunities: simplify modeling of three dimensional, vortex dominated, unsteady separated flow fields; are effective means for controlling unsteady aerodynamics; and address integration of sensors, controllers, and time lags into adaptive control systems

    Continued Development of a Non-Proprietary, High-Tension, Cable End Terminal System

    Get PDF
    A non-proprietary, cable guardrail system is currently under development for the Midwest States Pooled Fund Program. A cable guardrail end terminal was necessary to accompany the cable guardrail system. The objective of this research project was to develop design recommendations for the cable end terminal. Bogie testing that was previously completed on a design concept indicated delayed cable release, which was an undesired performance that led to vehicle instabilities. Several design changes were recommended for better end terminal performance and to reflect the changes made to the cable median barrier. An LS-DYNA model of the modified cable end terminal was developed. Simulations of 0- and 15-degree impacts on the end of the cable anchor bracket with a bogie model indicated that the cables would release easily and not induce vehicle instabilities. This behavior still needs to be verified through bogie and full-scale crash testing. Simulations of a 25-degree reverse impact between post nos. 2 and 3 with small car models indicated that cables did not release easily and may interlock around the car resulting in excessive vehicle decelerations or instabilities. Simulations of various line post designs found that the MWP and weakened MWP have lower forces and energies during impact than the S3x5.7 posts used in previous three-cable end terminals. This finding would suggest improved performance with respect to vehicle override and instability. However, vehicle simulations with multiple line posts impacted were inconclusive. Further design modifications, evaluation, and testing are recommended

    Length of Need and Minimum System Length for F-Shape Portable Concrete Barrier

    Get PDF
    Portable concrete barrier (PCB) systems are often used to redirect errant vehicles through a combination of inertial resistance, lateral friction loads, and tensile loads developed from the mass and friction of the barrier segments. State departments of transportation (DOTs) and other end users may wish to utilize minimal length PCB installations to shield a hazard or work zone or limit the number of barriers required on the upstream and downstream ends to reduce overall system length. However, concerns with the performance of shorter PCB installations include increased lateral deflections and working widths and barrier pocketing. Additionally, no impact testing has been performed near the upstream or downstream ends of the free-standing PCB system to determine the limits of the length of need (LON) of the system. These impacts may increase the potential for gating through the system, pocketing, rapid deceleration, and/or vehicle instability. The objective of this research study was to investigate and evaluate the safety performance of a previously developed F-shape PCB system to determine minimum system length and the number of barriers required for the beginning and end of the LON. LS-DYNA simulation modeling was applied to determine potential beginning and end of LON points on reduced system lengths to select a configuration for full-scale testing and evaluation of a minimum length PCB system. A 100-ft long PCB installation was selected, and full-scale crash testing was conducted on the beginning and end of LON of the reduced length system. Test no. NELON-1 was conducted to MASH test designation 3-35 criteria on the beginning of LON of the 100-ft long PCB installation, and the vehicle was safely redirected. Test no. NELON-2 was conducted to modified MASH test designation no. 3-37 criteria on the end of LON of the 100-ft long PCB installation, but the test was deemed a failure as the vehicle demonstrated a roll angle in excess of 75 degrees. Review of the crash test results suggested that a nine barrier or 112.5-ft long PCB installation would perform acceptably

    Increased Span Length for the MGS Long-Span Guardrail System Part III: Failure Analysis

    Get PDF
    The objective of this research study was to review and analyze the system failure observed during crash testing of an increased span length for the MGS long-span guardrail system in test no. MGSLS-2. Test no. MGSLS-2 was a full-scale crash test conducted on the MGS long-span guardrail with a span length of 311⁄4 ft (9.5 m). This test utilized universal breakaway steel posts (UBSPs) adjacent to the long span in lieu of the controlled release terminal (CRT) wood posts used in previous long span systems. An engineering analysis was undertaken to review the downstream end anchorage failure observed in test no. MGSLS-2. The analysis also compared critical aspects of the barrier performance with previous full-scale crash tests that had similar features or increased anchor loading. The results of this analysis and conclusions regarding potential causes of the anchor failure suggested that there was no identifiable root cause for anchor failure, but the pocketing and deflection suggest that the barrier system may have been pushed near its limits. It was noted that certain factors may have contributed to the anchor failure, including increased span length, location of the impact point, differences in the breakaway post behavior adjacent to the unsupported span, and natural variation in wood strength. Following the analysis, several potential design modifications were noted for improving the barrier system and reducing the potential for end anchorage failure. However, it was noted that further analysis of these potential improvements, selection of a preferred design, and evaluation of the revised barrier system through full-scale crash tests will be required to fully evaluate the system to MASH TL-3 criteria
    corecore