110 research outputs found

    Host-feeding patterns of Aedes (Aedimorphus) vexans arabiensis, a Rift Valley Fever virus vector in the Ferlo pastoral ecosystem of Senegal

    Get PDF
    Background: Host-vector contact is a key factor in vectorial capacity assessment and thus the transmission of mosquito-borne viruses such as Rift Valley Fever (RVF), an emerging zoonotic disease of interest in West Africa. The knowledge of the host-feeding patterns of vector species constitutes a key element in the assessment of their epidemiological importance in a given environment. The aim of this work was to identify the blood meal origins of the mosquito Aedes vexans arabiensis, the main vector of RVF virus in the Ferlo pastoral ecosystem of Senegal. Methodology/principal findings: Engorged female mosquitoes were collected in Younoufe´re´ in the pastoral ecosystem in the Ferlo region during the 2014 rainy season. CO2-baited CDC light traps were set at six points for two consecutive nights every month from July to November. Domestic animals present around traps were identified and counted for each trapping session. Blood meal sources of engorged mosquitoes were identified using a vertebrate-specific multiplexed primer set based on cytochrome b. Blood meal sources were successfully identified for 319 out of 416 blood-fed females (76.68%), of which 163 (51.1%) were single meals, 146 (45.77%) mixed meals from two different hosts and 10 (3.13%) mixed meals from three different hosts. Aedes vexans arabiensis fed preferentially on mammals especially on horse compared to other hosts (FR = 46.83). Proportions of single and mixed meals showed significant temporal and spatial variations according to the availability of the hosts. Conclusion: Aedes vexans arabiensis shows an opportunistic feeding behavior depending on the host availability. This species fed preferentially on mammals especially on horses (primary hosts) and ruminants (secondary hosts)

    Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus

    Get PDF
    Background Rift Valley fever virus (RVFV; Phlebovirus, Bunyaviridae) is a mosquito–borne, zoonotic pathogen. In Senegal, RVFV was first isolated in 1974 from Aedes dalzieli (Theobald) and thereafter from Ae. fowleri (de Charmoy), Ae. ochraceus Theobald, Ae. vexans (Meigen), Culex poicilipes (Theobald), Mansonia africana (Theobald) and Ma. uniformis (Theobald). However, the vector competence of these local species has never been demonstrated making hypothetical the transmission cycle proposed for West Africa based on serological data and mosquito isolates. Methods Aedes vexans and Cx. poicilipes, two common mosquito species most frequently associated with RVFV in Senegal, and Cx. quinquefasciatus, the most common domestic species, were assessed after oral feeding with three RVFV strains of the West and East/central African lineages. Fully engorged mosquitoes (420 Ae. vexans, 563 Cx. quinquefasciatus and 380 Cx. poicilipes) were maintained at 27 ± 1 °C and 70–80 % relative humidity. The saliva, legs/wings and bodies were tested individually for the RVFV genome using real-time RT-PCR at 5, 10, 15 and 20 days post exposure (dpe) to estimate the infection, dissemination, and transmission rates. Genotypic characterisation of the 3 strains used were performed to identify factors underlying the different patterns of transmission. Results The infection rates varied between 30.0–85.0 % for Ae. vexans, 3.3–27 % for Cx. quinquefasciatus and 8.3–46.7 % for Cx. poicilipes, and the dissemination rates varied between 10.5–37 % for Ae. vexans, 9.5–28.6 % for Cx. quinquefasciatus and 3.0–40.9 % for Cx. poicilipes. However only the East African lineage was transmitted, with transmission rates varying between 13.3–33.3 % in Ae. vexans, 50 % in Cx. quinquefasciatus and 11.1 % in Cx. poicilipes. Culex mosquitoes were less susceptible to infection than Ae. vexans. Compared to other strains, amino acid variation in the NSs M segment proteins of the East African RVFV lineage human-derived strain SH172805, might explain the differences in transmission potential. Conclusion Our findings revealed that all the species tested were competent for RVFV with a significant more important role of Ae. vexans compared to Culex species and a highest potential of the East African lineage to be transmitted

    West nile virus transmission in sentinel chickens and potential mosquito vectors, Senegal River Delta, 2008-2009

    Get PDF
    West Nile virus (WNV) is an arthropod-borne Flavivirus usually transmitted to wild birds by Culex mosquitoes. Humans and horses are susceptible to WNV but are dead-end hosts. WNV is endemic in Senegal, particularly in the Senegal River Delta. To assess transmission patterns and potential vectors, entomological and sentinel serological was done in Ross Bethio along the River Senegal. Three sentinel henhouses (also used as chicken-baited traps) were set at 100 m, 800 m, and 1,300 m from the river, the latter close to a horse-baited trap. Blood samples were taken from sentinel chickens at 2-week intervals. Seroconversions were observed in sentinel chickens in November and December. Overall, the serological incidence rate was 4.6% with 95% confidence interval (0.9; 8.4) in the sentinel chickens monitored for this study. Based on abundance pattern, Culex neavei was the most likely mosquito vector involved in WNV transmission to sentinel chickens, and a potential bridge vector between birds and mammals. (Résumé d'auteur

    Competitiveness and survival of two strains of Glossina palpalis gambiensis in an urban area of Senegal

    Get PDF
    Background : In the Niayes area, located in the west of Senegal, only one tsetse species, Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) was present. The Government of Senegal initiated and implemented an elimination programme in this area that included a sterile insect technique (SIT) component. The G. p. gambiensis strain (BKF) mass-reared at the Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES) in Burkina Faso was used for the SIT component. Methodology/principal findings: Studies conducted in 2011 in four localities in the Niayes area (Pout, Sébikotane, Diacksao Peul and the Parc de Hann) showed that the BKF strain demonstrated inferior survival in the ecosystem of the Parc de Hann, a forested area in the city centre of the capital Dakar. Therefore, G. p. gambiensis flies from the Niayes area (SEN strain) were colonized. Here we compared the competitiveness and survival of the two strains (BKF and SEN) in the Parc de Hann. Released sterile males of the SEN colony showed a daily mortality rate of 0.08 (SD 0.08) as compared with 0.14 (SD 0.08) for the BKF flies but the difference was not significant (p-value = 0.14). However, the competitiveness of the SEN males was lower (0.14 (SD 0.10)) as compared with that of the BKF males (0.76 (SD 0.11)) (p-value < 10−3). Conclusions/significance: Based on the results of this study, it can be concluded that the BKF strain will remain the main strain to be used in the elimination programme. Despite the slightly longer survival of the SEN males in the Parc de Hann, the superior competitiveness of the BKF males is deemed more important for the SIT component, as their shorter survival rates can be easily compensated for by more frequent fly releases. (Résumé d'auteur

    Animal trypanosomosis eliminated in a major livestock production region in Senegal following the eradication of a tsetse population

    Get PDF
    African animal trypanosomosis (AAT) was one of the main disease-related constraints to the development of intensive livestock production systems in the Niayes region of Senegal, a 30 km wide strip of land along the coast between Dakar and Saint-Louis. To overcome this constraint, the Government of Senegal initiated an area-wide integrated pest management programme combining chemical control tactics with the sterile insect technique to eradicate a population of the tsetse fly Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae) in this area. The project was implemented following a phased conditional approach, and the target area was divided into three blocks treated sequentially. This study aims to assess the temporal dynamics of the prevalence of Trypanosoma spp. during the implementation of this programme. Between 2009 and 2022, 4,359 blood samples were collected from cattle and screened for trypanosomes using both the buffy coat and ELISA techniques, and PCR tests since 2020. The seroprevalence decreased from 18.9% (95%CI: 11.2–26.5) in 2009 to 0% in 2017–2022 in block 1, and from 92.9% (95%CI: 88.2–97) in 2010 to 0% in 2021 in block 2. The parasitological and serological data confirm the entomological monitoring results, i.e., that there is a high probability that the population of G. p. gambiensis has been eradicated from the Niayes and that the transmission of AAT has been interrupted in the treated area. These results indicate the effectiveness of the adopted approach and show that AAT can be sustainably removed through the creation of a zone free of G. p. gambiensis

    Colonization of the Mediterranean Basin by the vector biting midge species Culicoides imicola: an old story

    Full text link
    Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of Orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970's. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the late Pleistocene or early Holocene through a single event of introduction; however we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus
    corecore