1,179 research outputs found

    Microsatellite markers for the Arctic copepod Calanus glacialis and cross-amplification with C. finmarchicus

    Get PDF
    Calanus glacialis is a major component of Arctic zooplankton and a keystone species in Arctic marine ecosystems. Due to the observed climate warming, its numbers are being reduced to the advantage of a sibling Atlantic species Calanus finmarchicus. We developed and characterized the first set of microsatellite markers in this species to investigate its population genetic structure and dispersal capabilities. Nine polymorphic loci displayed an average of 7.3 alleles (range between 2 and 13) and the levels of expected heterozygosity ranged from 0.039 to 0.806. These provide a valuable tool to understand present connectivity patterns across Arctic regions, look for signatures of past climate effects and predict the response to future climate-driven environmental changes. Additionally, due to the cross-amplification with C. finmarchicus, the markers can be used to discriminate between these sibling species.National Science Centre, Poland [2011/03/B/NZ8/02876]; FCT, Portugal [PTDC/MAR/72630/2006]; EU FP7 Project ATP [226248]; European Community (ASSEMBLE-MARINE) [227799]info:eu-repo/semantics/publishedVersio

    Combination of surgical excision and custom designed silicon pressure splint therapy for keloids on the helical rim

    Get PDF
    Keloids are defined as dermal fibrotic lesions which are considered an aberration of the wound healing process. Their etiology and pathogenesis are poorly understood. Different treatment modalities are described in the literature depending on the morphology and size of the keloid. We report a case of a large ear keloid on the helical rim which was successfully treated with surgery and a custom designed silicon pressure clip

    Societal issues concerning the application of artificial intelligence in medicine

    Get PDF
    Medicine is becoming an increasingly data-centred discipline and, beyond classical statistical approaches, artificial intelligence (AI) and, in particular, machine learning (ML) are attracting much interest for the analysis of medical data. It has been argued that AI is experiencing a fast process of commodification. This characterization correctly reflects the current process of industrialization of AI and its reach into society. Therefore, societal issues related to the use of AI and ML should not be ignored any longer and certainly not in the medical domain. These societal issues may take many forms, but they all entail the design of models from a human-centred perspective, incorporating human-relevant requirements and constraints. In this brief paper, we discuss a number of specific issues affecting the use of AI and ML in medicine, such as fairness, privacy and anonymity, explainability and interpretability, but also some broader societal issues, such as ethics and legislation. We reckon that all of these are relevant aspects to consider in order to achieve the objective of fostering acceptance of AI- and ML-based technologies, as well as to comply with an evolving legislation concerning the impact of digital technologies on ethically and privacy sensitive matters. Our specific goal here is to reflect on how all these topics affect medical applications of AI and ML. This paper includes some of the contents of the “2nd Meeting of Science and Dialysis: Artificial Intelligence,” organized in the Bellvitge University Hospital, Barcelona, Spain.Peer ReviewedPostprint (author's final draft

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    P-odd and CP-odd Four-Quark Contributions to Neutron EDM

    Full text link
    In a class of beyond-standard-model theories, CP-odd observables, such as the neutron electric dipole moment, receive significant contributions from flavor-neutral P-odd and CP-odd four-quark operators. However, considerable uncertainties exist in the hadronic matrix elements of these operators strongly affecting the experimental constraints on CP-violating parameters in the theories. Here we study their hadronic matrix elements in combined chiral perturbation theory and nucleon models. We first classify the operators in chiral representations and present the leading-order QCD evolutions. We then match the four-quark operators to the corresponding ones in chiral hadronic theory, finding symmetry relations among the matrix elements. Although this makes lattice QCD calculations feasible, we choose to estimate the non-perturbative matching coefficients in simple quark models. We finally compare the results for the neutron electric dipole moment and P-odd and CP-odd pion-nucleon couplings with the previous studies using naive factorization and QCD sum rules. Our study shall provide valuable insights on the present hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the uncertainty of the calculation is adde

    Postglacial expansion of the arctic keystone copepod calanus glacialis

    Get PDF
    Calanus glacialis, a major contributor to zooplankton biomass in the Arctic shelf seas, is a key link between primary production and higher trophic levels that may be sensitive to climate warming. The aim of this study was to explore genetic variation in contemporary populations of this species to infer possible changes during the Quaternary period, and to assess its population structure in both space and time. Calanus glacialis was sampled in the fjords of Spitsbergen (Hornsund and Kongsfjorden) in 2003, 2004, 2006, 2009 and 2012. The sequence of a mitochondrial marker, belonging to the ND5 gene, selected for the study was 1249 base pairs long and distinguished 75 unique haplotypes among 140 individuals that formed three main clades. There was no detectable pattern in the distribution of haplotypes by geographic distance or over time. Interestingly, a Bayesian skyline plot suggested that a 1000-fold increase in population size occurred approximately 10,000 years before present, suggesting a species expansion after the Last Glacial Maximum.GAME from the National Science Centre, the Polish Ministry of Science and Higher Education Iuventus Plus [IP2014 050573]; FCT-PT [CCMAR/Multi/04326/2013]; [2011/03/B/NZ8/02876

    Inducing persistent flow disturbances accelerates atherogenesis and promotes thin cap fibroatheroma development in D374Y-PCSK9 hypercholesterolemic minipigs

    Get PDF
    BACKGROUND: -Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA). METHODS AND RESULTS: -D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ~3-fold higher downstream of the SMS compared to both upstream of the SMS and in the control artery (p<0.001). Advanced plaques were also primarily observed downstream of the SMS, in locations initially exposed to both low (p<0.002) and multidirectional (p<0.002) shear stress. TCFA regions demonstrated significantly lower shear stress that persisted over the duration of the study compared to other plaque types (p<0.005). CONCLUSIONS: -These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of TCFA

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Evaluating the Viscoelastic Properties of Tissue from Laser Speckle Fluctuations

    Get PDF
    Most pathological conditions such as atherosclerosis, cancer, neurodegenerative, and orthopedic disorders are accompanied with alterations in tissue viscoelasticity. Laser Speckle Rheology (LSR) is a novel optical technology that provides the invaluable potential for mechanical assessment of tissue in situ. In LSR, the specimen is illuminated with coherent light and the time constant of speckle fluctuations, τ, is measured using a high speed camera. Prior work indicates that τ is closely correlated with tissue microstructure and composition. Here, we investigate the relationship between LSR measurements of τ and sample mechanical properties defined by the viscoelastic modulus, G*. Phantoms and tissue samples over a broad range of viscoelastic properties are evaluated using LSR and conventional mechanical testing. Results demonstrate a strong correlation between τ and |G*| for both phantom (r = 0.79, p <0.0001) and tissue (r = 0.88, p<0.0001) specimens, establishing the unique capability of LSR in characterizing tissue viscoelasticity

    Combined Boyden-Flow Cytometry Assay Improves Quantification and Provides Phenotypification of Leukocyte Chemotaxis

    Get PDF
    Chemotaxis has been studied by classical methods that measure chemotactic and random motility responses in vitro, but these methods do not evaluate the total number and phenotype of migrating leukocytes simultaneously. Our objective was to develop and validate a novel assay, combined Boyden-flow cytometry chemotaxis assay (CBFCA), for simultaneous quantification and phenotypification of migrating leukocytes. CBFCA exhibited several important advantages in comparison to the classic Boyden chemotaxis assay (CBCA): 1) improved precision (intra-assay coefficients of variation (CVs): CBFCA-4.7 and 4.8% vs. CBCA-30.1 and 17.3%; inter-observer CVs: CBFCA-3.6% vs. CBCA 30.1%); 2) increased recovery of cells, which increased assay to provide increased sensitivity; 3) high specificity for determining the phenotype of migrating/attracted leukocytes; and 4) reduced performance time (CBFCA 120 min vs. CBCA 265 min). Other advantages of CBFCA are: 5) robustness, 6) linearity, 7) eliminated requirement for albumin and, importantly, 8) enabled recovery of migrating leukocytes for subsequent studies. This latter feature is of great benefit in the study of migrating leukocyte subsets. We conclude that the CBFCA is a novel and improved technique for experiments focused on understanding leukocyte trafficking during the inflammatory response
    corecore