4,368 research outputs found

    Atmospheric ozone measurements made from B-747 AIRLINERS: Spring 1975

    Get PDF
    Atmospheric ozone in the upper troposphere and lower stratosphere north of the equator has been registered aboard two commercial B-747 airliners. The composite ozone, flight and meteorological data are reported. Attention is drawn particularly to the vertical profiles of atmospheric ozone mixing ratio as a function of both distance from the tropopause and curvature of the streamlines. The GASP observations suggest that ozone levels typical of the lower stratosphere are often embedded in the upper troposphere, principally during occassions when cyclonic wind curvature was noted

    An analysis of the first two years of GASP data

    Get PDF
    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes

    Processing and Transmission of Information

    Get PDF
    Contains reports on two research projects.National Aeronautics and Space Administration (Grant NsG-334

    Equilibrium states of the pressure function for products of matrices

    Full text link
    Let {Mi}i=1\{M_i\}_{i=1}^\ell be a non-trivial family of d×dd\times d complex matrices, in the sense that for any nNn\in \N, there exists i1...in{1,...,}ni_1... i_n\in \{1,..., \ell\}^n such that Mi1...Min0M_{i_1}... M_{i_n}\neq {\bf 0}. Let P ⁣:(0,)RP \colon (0,\infty)\to \R be the pressure function of {Mi}i=1\{M_i\}_{i=1}^\ell. We show that for each q>0q>0, there are at most dd ergodic qq-equilibrium states of PP, and each of them satisfies certain Gibbs property.Comment: 12 pages. To appear in DCD

    Random Sequential Renormalization of Networks I: Application to Critical Trees

    Get PDF
    We introduce the concept of Random Sequential Renormalization (RSR) for arbitrary networks. RSR is a graph renormalization procedure that locally aggregates nodes to produce a coarse grained network. It is analogous to the (quasi-)parallel renormalization schemes introduced by C. Song {\it et al.} (Nature {\bf 433}, 392 (2005)) and studied more recently by F. Radicchi {\it et al.} (Phys. Rev. Lett. {\bf 101}, 148701 (2008)), but much simpler and easier to implement. In this first paper we apply RSR to critical trees and derive analytical results consistent with numerical simulations. Critical trees exhibit three regimes in their evolution under RSR: (i) An initial regime N0νN<N0N_0^{\nu}\lesssim N<N_0, where NN is the number of nodes at some step in the renormalization and N0N_0 is the initial size. RSR in this regime is described by a mean field theory and fluctuations from one realization to another are small. The exponent ν=1/2\nu=1/2 is derived using random walk arguments. The degree distribution becomes broader under successive renormalization -- reaching a power law, pk1/kγp_k\sim 1/k^{\gamma} with γ=2\gamma=2 and a variance that diverges as N01/2N_0^{1/2} at the end of this regime. Both of these results are derived based on a scaling theory. (ii) An intermediate regime for N01/4NN01/2N_0^{1/4}\lesssim N \lesssim N_0^{1/2}, in which hubs develop, and fluctuations between different realizations of the RSR are large. Crossover functions exhibiting finite size scaling, in the critical region NN01/2N\sim N_0^{1/2} \to \infty, connect the behaviors in the first two regimes. (iii) The last regime, for 1NN01/41 \ll N\lesssim N_0^{1/4}, is characterized by the appearance of star configurations with a central hub surrounded by many leaves. The distribution of sizes where stars first form is found numerically to be a power law up to a cutoff that scales as N0νstarN_0^{\nu_{star}} with νstar1/4\nu_{star}\approx 1/4

    Combinatorics of linear iterated function systems with overlaps

    Full text link
    Let p0,...,pm1\bm p_0,...,\bm p_{m-1} be points in Rd{\mathbb R}^d, and let {fj}j=0m1\{f_j\}_{j=0}^{m-1} be a one-parameter family of similitudes of Rd{\mathbb R}^d: fj(x)=λx+(1λ)pj,j=0,...,m1, f_j(\bm x) = \lambda\bm x + (1-\lambda)\bm p_j, j=0,...,m-1, where λ(0,1)\lambda\in(0,1) is our parameter. Then, as is well known, there exists a unique self-similar attractor SλS_\lambda satisfying Sλ=j=0m1fj(Sλ)S_\lambda=\bigcup_{j=0}^{m-1} f_j(S_\lambda). Each xSλ\bm x\in S_\lambda has at least one address (i1,i2,...)1{0,1,...,m1}(i_1,i_2,...)\in\prod_1^\infty\{0,1,...,m-1\}, i.e., limnfi1fi2...fin(0)=x\lim_n f_{i_1}f_{i_2}... f_{i_n}({\bf 0})=\bm x. We show that for λ\lambda sufficiently close to 1, each xSλ{p0,...,pm1}\bm x\in S_\lambda\setminus\{\bm p_0,...,\bm p_{m-1}\} has 202^{\aleph_0} different addresses. If λ\lambda is not too close to 1, then we can still have an overlap, but there exist x\bm x's which have a unique address. However, we prove that almost every xSλ\bm x\in S_\lambda has 202^{\aleph_0} addresses, provided SλS_\lambda contains no holes and at least one proper overlap. We apply these results to the case of expansions with deleted digits. Furthermore, we give sharp sufficient conditions for the Open Set Condition to fail and for the attractor to have no holes. These results are generalisations of the corresponding one-dimensional results, however most proofs are different.Comment: Accepted for publication in Nonlinearit

    Golden gaskets: variations on the Sierpi\'nski sieve

    Full text link
    We consider the iterated function systems (IFSs) that consist of three general similitudes in the plane with centres at three non-collinear points, and with a common contraction factor \la\in(0,1). As is well known, for \la=1/2 the invariant set, \S_\la, is a fractal called the Sierpi\'nski sieve, and for \la<1/2 it is also a fractal. Our goal is to study \S_\la for this IFS for 1/2<\la<2/3, i.e., when there are "overlaps" in \S_\la as well as "holes". In this introductory paper we show that despite the overlaps (i.e., the Open Set Condition breaking down completely), the attractor can still be a totally self-similar fractal, although this happens only for a very special family of algebraic \la's (so-called "multinacci numbers"). We evaluate \dim_H(\S_\la) for these special values by showing that \S_\la is essentially the attractor for an infinite IFS which does satisfy the Open Set Condition. We also show that the set of points in the attractor with a unique ``address'' is self-similar, and compute its dimension. For ``non-multinacci'' values of \la we show that if \la is close to 2/3, then \S_\la has a nonempty interior and that if \la<1/\sqrt{3} then \S_\la$ has zero Lebesgue measure. Finally we discuss higher-dimensional analogues of the model in question.Comment: 27 pages, 10 figure

    Curvature-direction measures of self-similar sets

    Full text link
    We obtain fractal Lipschitz-Killing curvature-direction measures for a large class of self-similar sets F in R^d. Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable submanifolds. They decouple as independent products of the unit Hausdorff measure on F and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.Comment: 17 pages, 2 figures. Update for author's name chang
    corecore