4,368 research outputs found
Atmospheric ozone measurements made from B-747 AIRLINERS: Spring 1975
Atmospheric ozone in the upper troposphere and lower stratosphere north of the equator has been registered aboard two commercial B-747 airliners. The composite ozone, flight and meteorological data are reported. Attention is drawn particularly to the vertical profiles of atmospheric ozone mixing ratio as a function of both distance from the tropopause and curvature of the streamlines. The GASP observations suggest that ozone levels typical of the lower stratosphere are often embedded in the upper troposphere, principally during occassions when cyclonic wind curvature was noted
An analysis of the first two years of GASP data
Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes
Processing and Transmission of Information
Contains reports on two research projects.National Aeronautics and Space Administration (Grant NsG-334
Equilibrium states of the pressure function for products of matrices
Let be a non-trivial family of complex
matrices, in the sense that for any , there exists such that . Let be the pressure function of . We show
that for each , there are at most ergodic -equilibrium states of
, and each of them satisfies certain Gibbs property.Comment: 12 pages. To appear in DCD
Random Sequential Renormalization of Networks I: Application to Critical Trees
We introduce the concept of Random Sequential Renormalization (RSR) for
arbitrary networks. RSR is a graph renormalization procedure that locally
aggregates nodes to produce a coarse grained network. It is analogous to the
(quasi-)parallel renormalization schemes introduced by C. Song {\it et al.}
(Nature {\bf 433}, 392 (2005)) and studied more recently by F. Radicchi {\it et
al.} (Phys. Rev. Lett. {\bf 101}, 148701 (2008)), but much simpler and easier
to implement. In this first paper we apply RSR to critical trees and derive
analytical results consistent with numerical simulations. Critical trees
exhibit three regimes in their evolution under RSR: (i) An initial regime
, where is the number of nodes at some step in the
renormalization and is the initial size. RSR in this regime is described
by a mean field theory and fluctuations from one realization to another are
small. The exponent is derived using random walk arguments. The
degree distribution becomes broader under successive renormalization --
reaching a power law, with and a variance
that diverges as at the end of this regime. Both of these results
are derived based on a scaling theory. (ii) An intermediate regime for
, in which hubs develop, and
fluctuations between different realizations of the RSR are large. Crossover
functions exhibiting finite size scaling, in the critical region , connect the behaviors in the first two regimes. (iii)
The last regime, for , is characterized by the
appearance of star configurations with a central hub surrounded by many leaves.
The distribution of sizes where stars first form is found numerically to be a
power law up to a cutoff that scales as with
Combinatorics of linear iterated function systems with overlaps
Let be points in , and let
be a one-parameter family of similitudes of : where
is our parameter. Then, as is well known, there exists a
unique self-similar attractor satisfying
. Each has
at least one address , i.e.,
.
We show that for sufficiently close to 1, each has different
addresses. If is not too close to 1, then we can still have an
overlap, but there exist 's which have a unique address. However, we
prove that almost every has addresses,
provided contains no holes and at least one proper overlap. We
apply these results to the case of expansions with deleted digits.
Furthermore, we give sharp sufficient conditions for the Open Set Condition
to fail and for the attractor to have no holes.
These results are generalisations of the corresponding one-dimensional
results, however most proofs are different.Comment: Accepted for publication in Nonlinearit
Golden gaskets: variations on the Sierpi\'nski sieve
We consider the iterated function systems (IFSs) that consist of three
general similitudes in the plane with centres at three non-collinear points,
and with a common contraction factor \la\in(0,1).
As is well known, for \la=1/2 the invariant set, \S_\la, is a fractal
called the Sierpi\'nski sieve, and for \la<1/2 it is also a fractal. Our goal
is to study \S_\la for this IFS for 1/2<\la<2/3, i.e., when there are
"overlaps" in \S_\la as well as "holes". In this introductory paper we show
that despite the overlaps (i.e., the Open Set Condition breaking down
completely), the attractor can still be a totally self-similar fractal,
although this happens only for a very special family of algebraic \la's
(so-called "multinacci numbers"). We evaluate \dim_H(\S_\la) for these
special values by showing that \S_\la is essentially the attractor for an
infinite IFS which does satisfy the Open Set Condition. We also show that the
set of points in the attractor with a unique ``address'' is self-similar, and
compute its dimension.
For ``non-multinacci'' values of \la we show that if \la is close to 2/3,
then \S_\la has a nonempty interior and that if \la<1/\sqrt{3} then \S_\la$
has zero Lebesgue measure. Finally we discuss higher-dimensional analogues of
the model in question.Comment: 27 pages, 10 figure
Curvature-direction measures of self-similar sets
We obtain fractal Lipschitz-Killing curvature-direction measures for a large
class of self-similar sets F in R^d. Such measures jointly describe the
distribution of normal vectors and localize curvature by analogues of the
higher order mean curvatures of differentiable submanifolds. They decouple as
independent products of the unit Hausdorff measure on F and a self-similar
fibre measure on the sphere, which can be computed by an integral formula. The
corresponding local density approach uses an ergodic dynamical system formed by
extending the code space shift by a subgroup of the orthogonal group. We then
give a remarkably simple proof for the resulting measure version under minimal
assumptions.Comment: 17 pages, 2 figures. Update for author's name chang
- …