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Random sequential renormalization of networks: Application to critical trees
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We introduce the concept of random sequential renormalization (RSR) for arbitrary networks. RSR is a graph
renormalization procedure that locally aggregates nodes to produce a coarse grained network. It is analogous
to the (quasi)parallel renormalization schemes introduced by C. Song et al. [C. Song et al., Nature (London)
433, 392 (2005)] and studied by F. Radicchi et al. [F. Radicchi et al., Phys. Rev. Lett. 101, 148701 (2008)],
but much simpler and easier to implement. Here we apply RSR to critical trees and derive analytical results
consistent with numerical simulations. Critical trees exhibit three regimes in their evolution under RSR. (i) For
Nν

0 � N < N0, where N is the number of nodes at some step in the renormalization and N0 is the initial size of
the tree, RSR is described by a mean-field theory, and fluctuations from one realization to another are small. The
exponent ν = 1/2 is derived using random walk and other arguments. The degree distribution becomes broader
under successive steps, reaching a power law pk ∼ 1/kγ with γ = 2 and a variance that diverges as N

1/2
0 at the

end of this regime. Both of these latter results are obtained from a scaling theory. (ii) For N
νstar
0 � N � N

1/2
0 ,

with νstar ≈ 1/4 hubs develop, and fluctuations between different realizations of the RSR are large. Trees are
short and fat with an average radius that is O(1). Crossover functions exhibiting finite-size scaling in the critical
region N ∼ N

1/2
0 → ∞ connect the behaviors in the first two regimes. (iii) For N � N

νstar
0 , star configurations

appear with a central hub surrounded by many leaves. The distribution of stars is broadly distributed over this
range. The scaling behaviors found under RSR are identified with a continuous transition in a process called
“agglomerative percolation” (AP), with the coarse-grained nodes in RSR corresponding to clusters in AP that
grow by simultaneously attaching to all their neighboring clusters.
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I. INTRODUCTION

Renormalization is a basic concept in statistical physics.
It is a process whereby degrees of freedom in a system
are successively eliminated by coarse graining. At the same
time system parameters are rescaled to compensate for the
decimation, and the smallest scale is reset to its original
value [1]. Since a series of such transformations is itself a
transformation, the transformations {R} form a semi-group:
the “renormalization group” (RG).

If the system is statistically invariant under {R}, one speaks
of RG invariance. An invariant system exhibits an asymptotic
fixed point under the RG flow with scaling described by
homogeneous functions. Prototypical RG fixed points are
critical phenomena displayed at continuous phase transitions
as for the Ising model, by a-thermal systems like directed
[2] or ordinary [3] percolation, relativistic quantum field
theories [4], or the Feigenbaum (period doubling) cascade
in one-dimensional dynamical systems [5]. Systems with the
same fixed point under RG are in the same universality class
and share the same critical exponents.

It is natural to ask if similar concepts can be applied to glean
meaningful information about complex networks. A positive
answer was suggested in Ref. [6] and has stirred much interest.
In the present paper we start an investigation to further explore
whether and in what sense this can be true.

For models on a lattice, coarse graining can be accom-
plished either in Fourier space or in real space. A typical real
space RG proceeds heuristically by covering a spin lattice with
a regular grid of boxes, and replacing the degrees of freedom

in each box by a “superspin” [3]. Interactions between spins in
neighboring boxes are used to specify the couplings between
superspins.

However, many real-world phenomena are better rep-
resented as complex networks rather than regular lattices.
Although research in this area has exploded in recent years
(for reviews see, e.g., Refs. [7–9]), our understanding of the
statistical physics of complex networks has not caught up
with the vast body of knowledge accrued over decades for
lattice systems. Some phase transitions on networks (e.g.,
in the spreading of epidemics [10,11]) are straightforward
generalizations of critical phenomena on lattices. Yet it is
not clear whether the RG, and real-space renormalization,
in particular, can be applied systematically to complex
networks.

Closely related to renormalization is the notion of fractal
dimensions [1,4]. Many complex networks are small world
networks [12,13], where the number of nodes within reach
of any node via paths of length r increases exponentially
with r . Via any standard definition, this gives infinite fractal
dimensions. However Song et al. [6] made claims to the
contrary, finding finite fractal dimensions for several real-
world networks based on a quasiparallel renormalization
scheme. A real-space RG for networks that is not based on
the concept of fractal dimensions, but studied in terms of
the flow under renormalization, was proposed by Radicchi
et al. [14,15].

A fundamental issue pertinent to all the work up to now
on renormalization of networks (see, for instance, Refs. [6,
14–20]) is that completely covering a network with equal size
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boxes leads to a number of unavoidable dilemmas that could
lead to erroneous conclusions. Conceptually, covering the
system with boxes of equal sizes is a flagrant violation of the
original idea of Hausdorff [21], where the system ought to be
covered with a partitioning whose elements have individually
optimized sizes up to some largest size r . In most applications
this is not a serious impediment, and a covering with equal
size elements gives equivalent results. Thus most estimates of
fractal dimensions in physics use fixed box sizes, although
there are well known cases where this leads to erroneous
results. The most famous one is given by any infinite but
countable set of points, which according to Hausdorff, but not
according to any covering algorithm with fixed box size, has
zero dimension.

One reason why this problem can be neglected in many
physical systems is that the number of points per box (or,
more precisely, the weight of each box) has small fluctuations,
in particular, relative to a distribution whose width increases
exponentially with box size. For small world networks, where,
indeed, the maximum number of nodes increases exponentially,
the schemes of Refs. [6,16–20] may give misleading results
because most boxes have only a few nodes. Then the problems
associated with fixed box size become acute and there is no
reason to believe that the results obtained are related to genuine
fractal dimensions of the underlying graph.

Even with fixed box size, the covering should also be
optimized with respect to the exact placement or tiling of the
boxes, which is an NP hard problem [17]. Heuristic methods
for this optimization have been claimed to work [6,16,20], but
as a matter of fact they depend on the order in which boxes are
laid down. Thus they are not true parallel substitutions of nodes
by supernodes, but quasiparallel since the single step of tiling
the whole network is implemented as a sequence of partial
tilings. Combined with the problem of almost empty boxes,
this means that the efficiency of the box covering algorithm
changes both within each renormalization step (the boxes put
down first contain in general more vertices than later boxes)
and from one step to the next.

Another problem with the (quasi)parallel renormalization
scheme is that each step of renormalization dramatically
reduces the number of nodes in the network. Therefore
few points and less statistics are obtained for analyzing
renormalization flow. This becomes particularly serious in
the case of small world networks which collapse to one
node in a few steps, even when the initial network size is
huge. This has been overcome to some extent in Ref. [22] by
performing a renormalization where only parts of the network
are coarse-grained at each step, at the cost of adding more
parameters and making the results harder to interpret.

In view of these problems, we decided to study graph renor-
malization for unweighted, undirected networks by means of a
purely sequential algorithm: At each step one node is selected
at random, and all nodes within a fixed distance of it (including
itself) are replaced by a single supernode. The supernode has
links to all other nodes that were connected to the original
subset absorbed into the supernode. This is repeated until the
network collapses to a single node.

Our method avoids the problem of finding an optimum
tiling as well as problems with almost empty boxes. A further
advantage of our random sequential renormalization (RSR)

procedure is that each step has a much smaller effect on the
network, and thus the whole renormalization flow consists of
many more single steps for a finite system and allows for a
more fine grained analysis.

If there are fixed points underlying this RG flow, then they
will manifest themselves in terms of (finite-size) scaling laws,
which hold for large initial networks at intermediate times.
Here time is measured by the number of steps in the RSR.
At intermediate times, the system is far from both the initial
network and the non-invariant final network composed of a
single super node.

On any graph, including networks or lattices, the supern-
odes can be viewed as clusters that grow by attaching to all of
their neighboring clusters, up to a distance b in the network
of clusters. This process, called “agglomerative percolation,”
has been solved exactly in one dimension and shown to exhibit
scaling laws with exponents that depend on b [23]. On a square
lattice in two dimensions, critical behavior is seen which is in
a different universality class [24] than ordinary percolation.
Thus the scaling behavior seen in RSR occurs as a result of
a type of percolation transition and is not restricted to cases
where the underlying graph is fractal.

Here we apply our RSR methodology to critical trees and
also find evidence for a critical point (which is, however,
not a fixed point of the RSR) where the number of links
attached to any node (i.e., its degree) follows a power law
and divergences appear for a number of quantities, including
the variance of the degree distribution. The size of the networks
at the transition point diverges as N

1/2
0 , slower than the initial

network size (N0) in the limit of infinite system size. Below this
transition, renormalized trees are short and fat with an average
depth (or radius) which is O(1). We determine some critical
exponents using random walk and other arguments, as well as
a mean-field theory for the initial, uncorrelated phase. We use,
in addition, the observation that all renormalized networks
for b = 1 eventually reach a star dominated by a central
hub before they collapse to a single node. Our results are
confirmed by means of finite-size scaling analyses of results
from numerical simulations. These simulations also reveal
scaling behavior for the probability distribution for the sizes
of networks that first reach a star configuration. This turns out
to be equivalent to the distribution of sizes one step before the
network collapses to a single node. Stars first appear for renor-
malized networks when the size of the network is N � N

νstar
0

with νstar ≈ 1/4.
In Sec. II, we define the general RSR procedure for any

network as well as the specific ensemble of networks we
analyze in this paper. Section III presents our theoretical
and numerical results for RSR of critical trees. Finally,
we end with with conclusions and outlook for future work
in Sec. IV.

II. THE MODEL

A. Random sequential renormalization

For any undirected, unweighted graph, RSR with radius
b (b = 1,2, . . .) is defined as follows: Starting with a graph
with N0 nodes, we produce a sequence of graphs of strictly
decreasing sizes Nt with 0 < t � T and NT = 1. For each step
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FIG. 1. (Color online) One step of RSR with b = 1. The randomly
chosen target node (red circle), absorbs all its nearest neighbors
(blue stars). All links to the absorbed nodes (from green triangular
nodes) are then redirected to the target. Alternatively one can view the
supernode as a cluster (bounded by the red curve) that subsequently
grows by invading its neighboring clusters.

t → t + 1 (t is called “time” in the following).
(i) We choose randomly a target node i ∈ [1, . . . ,Nt ].

(ii) We delete all nodes that can be reached from i by at
least one path of length 1 � � � b.

(iii) We also delete all links between these chosen nodes,
and all links connecting them to i.

(iv) Each link connecting any node outside this neighbor-
hood to a deleted node is redirected toward the target.

(v) If this creates a multiple link between any two nodes, it
is replaced by a single link.
Hence the target node i is replaced by a supernode that
maintains all links to the outside. Its internal features, however,
are erased from the network; consistent with coarse graining.
Figure 1 shows an example of one step of RSR for b = 1. After
absorbing its neighbors the supernode is treated like any other
node and the process repeats until the network collapses into
a single node. One could also vary the probability of choosing
a target node by a function of its mass (the number of nodes
absorbed into it), or its degree (the number of links attached
to it), but these aspects are not explored here.

When b = 1, only nearest neighbors of the target node
are deleted. For b > 1 each step can be implemented by
performing b successive decimations with radius one on the
same target. Although this method is slightly slower than an
optimal coding where all nodes within distance �b of the
target are found and deleted in a single step, it reduces code
complexity and potential sources of errors.

For any radius b � 1, RSR exhibits two trivial fixed points:
a graph consisting of a single node, and an infinitely long
chain. For a long but finite chain, the time until a single
node is reached is T = �N0/2b�. In one dimension, the exact
probability to find any consecutive sequence of node masses
for any N0 and at any time has been determined [23]. At late
times, and for large N0, the mass distribution of the nodes
exhibits scaling both at small and large sizes with (different)
exponents that depend on b. For b = 1 another fixed point
exists, which is a star with infinitely many leaves. In that limit,
the probability to choose the central hub of the star as the target
vanishes. With probability one, a single leaf is removed during
each RSR step. For a finite number Nstar − 1 of leaves, a star
has an average lifetime T̄ = O(Nstar) before it collapses into
a single node. Notice that simple stars are not fixed points for
b > 1, as any star reduces to a single node in one step with
probability one. In this paper we study only the case of RSR
with b = 1.

B. Initial graph ensemble

The ensemble of critical trees is generated as follows:
Starting with a single node, each node can have 0, 1, or 2
offspring with probabilities 1/4, 1/2, and 1/4. (Hence the
mean number of offspring is 1.) The process runs until it dies
due to fluctuations. The sizes of trees obtained in this way are
distributed according to an inverse power law P (N0) ∼ N

−3/2
0

[3]. From these we pick a large (≈102–103) ensemble of trees
with the desired (large) N0(±10%), and discard all others.
Note that simply truncating trees that survive up to N0 would
give a biased sampling of the ensemble.

This construction generates a rooted tree, with important
consequences for joint degree distributions of adjacent nodes.
The direction of growth leaves its imprint on them. For
ordinary undirected random graphs (Erdös-Renyi graphs), it
is well known that the degree distribution for pairs of nodes
obtained by randomly choosing a link is different from that
obtained by choosing any two nodes at random. If the degree
distribution is pk , the distribution of degree pairs for linked
nodes is not pkpk′ , but kk′pkpk′/〈k〉2 because higher-degree
nodes have a greater chance of being attached to a randomly
chosen link. For the present model, two connected nodes are
always in a mother-daughter relationship. In particular, all
nodes have in-degree one; that is, they have one mother (except
for the root). If k is the out-degree of the mother and k′ the
out-degree of the daughter, then the distribution of degree pairs
obtained by randomly choosing links is

kpkpk′∑
l,l′ lplpl′

= kpkpk′

〈k〉 . (1)

While high-degree mothers have a greater chance of appearing
in a pair than low-degree mothers, no such bias holds for
daughters. Otherwise said, if we pick a random node, the
out-degrees of its daughters will be distributed according to
pk′ , while the out-degree of its mother is distributed ∝ kpk .
Notice that this implies that our ensemble of critical trees is
not equivalent to the ensemble of critical Erdös-Renyi graphs.

In the following, we shall always denote by pk the
distribution of out-degrees, and we will, for simplicity, always
call k the “degree” (even though the real degree is k + 1).

III. ANALYTICAL CALCULATIONS AND
SIMULATION RESULTS

A. Evolution of the tree size N

Let nk be the number of nodes with degree k, and N = �knk

the total number of nodes in the tree (i.e., its size, at a given
step). Both N and nk are fluctuating functions of time t . Since
target nodes are picked randomly, the average degree of the
target is 〈k〉 ≡ N−1�kknk = 1 − 1/N , where the last equality
follows from the fact that the total number of links in a tree
is always N − 1. Since all the target’s neighbors (both its
mother, unless it is the root, and any daughters) are deleted in
the subsequent renormalization step, we get the exact result

�N

�t
= −〈k〉 − 1 + 1

N
= −2 + 2

N
. (2)

Here the overline denotes an average over the randomness of
the last step only, while brackets denote ensemble averages
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(except for 〈k〉) including also the randomness from previous
RSR steps. Approximating t by a continuous variable and
performing such an ensemble average gives

〈N〉 = N0 − 2t + ln

(
N0 − 1

〈N〉 − 1

)
. (3)

(The integration can only be performed for N > 1.) We have
replaced 〈1/N〉 on the right-hand side of Eq. (3) by 1/〈N〉,
which is a mean-field approximation. We show in Sec. III E
that this mean-field regime extends up to a time when N ∼
O(N1/2

0 ).

B. Evolution of the degree distribution

The probability that a randomly chosen node in a network
has degree k is pk = nk/N . The change of nk in one step of
renormalization has three contributions

�nk

�t
= rk + sk + qk, (4)

where rk is a loss term associated with the possibility that
the target had the (old) degree k before the considered
renormalization step. It is

rk = −pk. (5)

sk is a loss term from (old) neighbors of the target having degree
k. Assuming no degree correlations, which is also a mean-field
approximation, and summing over all (old) degrees k′ of the
target gives

sk = −
∑
k′

k′pk′pk −
∑
k′

pk′

(
kpk∑
l lpl

)

= −〈k〉pk − kpk

〈k〉
≈ −(1 + k)pk. (6)

Here the first term is the contribution of the daughters, while
the second is due to the mother. This assumes that the target
is not the root. For simplicity we shall neglect that possibility
in the following, which makes errors of O(1/N). These are
negligible for large N . The last line follows from 〈k〉 = 1 −
1/N ≈ 1, which is a good approximation for the same reason.

qk is a gain term arising from the possibility that the target
acquires new degree k. Assume that the old degree of the target
was m, that the degrees of its daughters were k1, . . . ,km, and
that the degree of its mother was k0 and that all degrees are
uncorrelated. Then

qk =
∑
m

pm

∑
k0,...,km

k0pk0

〈k〉
m∏

i=1

pki
δk0+,...,km−1,k. (7)

This term is not very transparent. For a more tractable
formulation we use the generating function methods discussed
next.

C. Generating functions

The generating function for pk is

G(x) =
∑

k

pkx
k, (8)

and moments of the distribution are given by

〈km〉 =
[(

x
d

dx

)m

G(x)

]
x=1

. (9)

Similarly, the generating function for the gain term is

Q(x) =
∑

k

qkx
k. (10)

If a variable has a given generating function, then the
generating function for the sum of that variable over m-
independent realizations is given by the mth power of that
generating function [25]. Hence, if the target node has degree
m, the generating function for the sum of degrees of all
its daughters is [G(x)]m. Using the above definitions and
G′(1) = 〈k〉 ≈ 1, we get

Q(x) =
∑
m

pmG′(x)Gm(x) = G′(x)G[G(x)]. (11)

This, together with Eqs. (2) through (6), leads to

�G(x)

�t
= 1

N
{G′(x)G[G(x)] − xG′(x)} + O(1/N2). (12)

A more tedious calculation, which requires generating func-
tions for the root of the tree, arrives at the neglected O(1/N2)
terms. The exact result (assuming no correlations) is

�G(x)

�t
= 1

N
{G′(x)G[G(x)] − xG′(x)}

+ 1

N2
{G[G(x)] − G(x)}. (13)

One checks easily that this satisfies the conditions that G(1) is
constant and G′(1) = 1 − 1/N for all t .

D. Variance of the degree distribution

Obtaining the time evolution of the variance of the degree
distribution requires an expression for the time evolution of
the second derivative of G. From Eq. (12) it follows that

�G′′(1)

�t
= 2G′′(1)

N
+ O(1/N2). (14)

Making the same steps and approximations as in Sec. III A
gives

dG′′(x)

dt
= d〈k2 − k〉

dt

= 2〈k2 − k〉
〈N〉 + O(1/〈N〉2)

≈ 2〈k2 − k〉
N0 − 2t

. (15)

Integrating, fixing the integration constant by the condition
〈k2〉0 = 3/2 + O(1/N0), and rewriting the result in terms of
the variance of the degree distribution σ 2 gives

σ 2 ≡ 〈k2〉 − 〈k〉2 ≈ N0

2(N0 − 2t)
≈ N0

2N
. (16)

In Fig. 2 we compare Eq. (16) for the variance of the degree
distribution with numerical simulations of RSR for different
initial sizes of critical trees. We see perfect agreement at early
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FIG. 2. (Color online) Comparison between the variance of the
degree distribution obtained from Eq. (16) and simulations for
different system sizes, N0. The mean-field theory extends over a
larger range for increasing N0. The inset shows that the maximum
variance in RSR observed numerically scales as N

1/2
0 , in agreement

with our scaling ansatz Eq. (17).

times, but increasingly larger disagreement at later times. This
is only, in part, due to the neglected higher-order terms in 1/N .
Another source of error at late times is that N exhibits large
fluctuations compared to its average. Also, degree correlations
develop. Hence, the mean-field approximation breaks down for
large t . But we also see from Fig. 2 that agreement between
theory and numerical results extends over a broader range for
increasing system size N0.

To understand better the behavior at late times (small
N/N0), we replot the same data using a finite-size scaling
(FSS) method in Fig. 3. This plot demonstrates that the scaling
ansatz

σ 2 = N0

N
g

(
N

Nν
0

)
, (17)

with scaling exponent ν = 1/2 gives excellent data collapse.
We derive the result ν = 1/2 in the next section. The scaling
function g(x) satisfies g(x) → 1/2 for x → ∞, in agreement
with Eq. (16). In addition, the network must, by definition,
end up as a star before it collapses. Assuming that the star
consists of a central hub surrounded by low-degree nodes
(which is verified numerically), its variance will scale with its
size as σ 2 ∼ N . Also, the variance of the degree distribution
of the star must be independent of the initial size N0. These
considerations lead to the conclusion that g(x) → x2 as
x → 0. Finally, in the scaling ansatz, g and its derivative are
continuous functions. As a result the maximum variance occurs
when N ∼ N

1/2
0 so that the maximum value of σ 2 ∼ N

1/2
0 , in

agreement with the inset of Fig. 2. Scaling laws like Eq. (17) in
terms of homogeneous functions are well known from critical
phenomena [1,4], where they describe FSS with several control
parameters such as temperature and magnetic field.

E. Fluctuations of the system size and the relaxation time

In this section we derive the result ν = 1/2 by considering
fluctuations around the average value of �N/�t , and the

FIG. 3. (Color online) Scaling of the variance of the degree
distribution obtained from RSR. The data are the same as in Fig. 2,
but the axes are different. They are chosen according to the scaling
ansatz Eq. (17), and give excellent data collapse. The straight line has
slope m = 2.

resulting fluctuations both of Nt and of the relaxation time T .
(Recall that the latter is defined as the time when the tree is
first reduced to a single node.) Here we explicitly label the
fluctuating number of nodes with its time dependence Nt .

Generalizing Eq. (2) and neglecting the O(1/N) term, we
make the ansatz

�Nt

�t
= −2 + εt . (18)

Here ε is a random variable with zero mean and with variance
equal to the variance of the degree distribution σ 2

t , which,
on average, increases with time t . Assuming no degree
correlations, the random variables εt at different times are
also uncorrelated, and

〈εt εt ′ 〉 = δt,t ′σ
2
t . (19)

Thus the fluctuations of Nt are given by

δNt ≡ Nt − 〈Nt 〉 =
t−1∑
t ′=0

εt ′ . (20)

Since σt is finite for all t , the central limit theorem implies that
δNt is Gaussian for large t with variance

Var[δNt ] =
t−1∑
t ′=0

σ 2
t ′ ≈

t−1∑
t ′=0

N0

2(N0 − 2t ′)

≈ N0

4
ln

N0

〈Nt 〉 . (21)

This estimate has to break down when typical fluctuations
of Nt are as big as its average, or when Var[δNt ] ≈ 〈Nt 〉2. We
claim that this happens at a time when 〈Nt 〉 ∼ N

1/2
0 , explaining

the fact that ν = 1/2. Indeed, when 〈Nt 〉 ∼ Nν
0 with some

positive exponent ν, then Var[δNt ] ∼ N0 ln N0 > N0 for large
N0, implying that it is larger than 〈Nt 〉2 for any ν < 1/2. On
the other hand, Var[δNt ] increases less quickly than 〈Nt 〉2 for
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FIG. 4. (Color online) Distributions of relaxation times for
various values of N0. The inset compares the variance of these
distributions to Eq. (23) finding good agreement.

any ν > 1/2, showing that the initial scaling regime breaks
down when 〈Nt 〉 ∼ Nν

0 with ν = 1/2.
Fluctuations of the relaxation time T are obtained by

demanding that NT = 1, which gives

2T −
T −1∑
t ′=0

εt ′ = N0. (22)

Hence, for large N0, T is distributed as an inverse Gaussian
variate, which is well approximated in the large N0 limit
by an ordinary Gaussian. Strictly, its variance cannot be
calculated exactly since the summation extends beyond the
limit of applicability of our theory. To take this into account,
we first convert the summation over t ′ to an integral over N

and truncate the integral at N
1/2
0 , where the mean-field theory

breaks down. Integration gives

Var[δT ] = 1
32N0 ln N0, (23)

plus lower-order terms. This is compared with the simulation
results shown in the inset of Fig. 4, finding good agreement.

F. Scaling of maximum degree

A simple way to track the formation of hubs under RSR is
to measure the maximum degree in the network kmax. A naive
scaling assumption is that when a few large hubs together
with many low-degree nodes dominate, σ 2 ∼ k2

max/N . Using
Eq. (17) gives

kmax ∼ N
1/2
0 f

(
N

N
1/2
0

)
. (24)

Figure 5 compares this equation to results from numerical
simulations. While there are clear (and expected) deviations
for N/N

1/2
0 → ∞, the collapse in the intermediate region N ∼

N
1/2
0 , where σ 2 achieves its maximum, is perfect. As before,

assuming that the tree evolves to a star with a hub at its center
suggests that f (x) ∼ x as x → 0. However in Fig. 5 we do not
observe this behavior as the fitting region is small and there
is still some curvature in the scaling function. As for σ 2, our

FIG. 5. (Color online) FSS analysis of kmax using Eq. (24). There
is perfect data collapse in the region N ∼ N

1/2
0 .

theory predicts that the largest value of kmax observed under
RSR scales as N

1/2
0 and agrees with the data seen in the inset

of Fig. 5.

G. Ratio of the largest degree to the second largest degree

The ratio of kmax to the second largest degree kmax,2

(provided that kmax,2 > 0) is shown in Fig. 6. It agrees with an
FSS analysis using the same exponent ν = 1/2

kmax

kmax,2
= h

(
N

N
1/2
0

)
. (25)

Once again the extreme limits of the scaling function h can
be determined. For the initial network the largest and second
largest degree are equal, so h(x → ∞) → 1. For a pure star

FIG. 6. (Color online) FSS analysis of kmax/kmax,2. This ratio
increases as one large hub separates from the rest of the degree
distribution. The data show good agreement with the scaling ansatz
Eq. (25). The line with slope −1 indicates the theoretical prediction
as the network approaches a star.
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FIG. 7. (Color online) Log-log plot of the degree distribution
pk for trees with N0 = 8 × 104 at three values of N : N = 7N

1/2
0 ,

N = 2N
1/2
0 , and N = 0.5N

1/2
0 . These distributions are obtained by

averaging over different initial networks and different realizations
of RSR. The distribution widens and then becomes more narrow on
decreasing N as hubs separate from the rest of the nodes during the
transition. The data are consistent with our theoretical prediction that
at the critical point pk ∼ k−γ with γ = 2.

of size N , kmax/kmax,2 = N . As shown in Sec. III J, stars
first appear when N ∼ N

νstar
0 with νstar ≈ 1/4. In that case

kmax/kmax,2 ∼ N
1/4
0 . Hence h(N−1/4

0 ) ∼ N
1/4
0 , or h(x → 0) ∼

1/x. Figure 6 shows that h is increasing in this limit, although
the asymptotic regime is not yet reached for the system sizes
studied.

H. Degree distribution

Degree distributions for large initial trees at three points
in the evolution are shown in Fig. 7. Critical trees start
with a narrow degree distribution, which becomes broader
and broader under RSR. The degree distribution gradually
transforms into a power-law distribution as N approaches
∼N

1/2
0 . For a power-law degree distribution p(k) ∼ k−γ , the

variance obeys

σ 2 ∼
∫ kmax

k2−γ dk ∼ k3−γ
max . (26)

From the scaling result at the transition, σ 2 ∼ kmax ∼ N
1/2
0 ,

we get γ = 2, consistent with the data shown.
With the formation of a giant hub at the transition, a bump

appears at large k in pk . This is clearly visible for N = 0.5N
1/2
0

in Fig. 7. Note that the distributions shown in this figure are
obtained by averaging over many initial networks and many
realizations of RSR. In the degree distribution of a single
network a gap emerges between the largest hub and the rest of
the nodes for N ∼ N

1/2
0 as demonstrated in Fig. 6.

I. Mean-field theory for average radius of trees

The sum of the distances of nodes from the root in a tree of
size N can be written as

R =
N−1∑
x=1

gx, (27)

where gx is the distance of node x from the root. It is simplest
to consider that (except for the root) the mother of a target
node absorbs her (target) daughter plus all of that daughter’s
daughters. Consider node x at distance gx > 1. If the root is the
target in the next RSR step, gx is reduced by 1. If an ancestor
of x ′s mother is hit, which is not the root, then gx is reduced
by 2. If either x or her mother is the target, then x disappears,
contributing zero to R. Hence the position of x evolves in the
continuous time approximation on average as

N
∂gx

∂t
= −1 − 2(gx − 2) − 2gx = −4gx + 3, (28)

for x > 1. For x = 1

N
∂gx

∂t
= −2. (29)

We can write the evolution in terms of the average number
of nodes instead of time. As before, in mean field we ignore
fluctuations in N about its average 〈N〉, in R about its average
〈R〉, and in the number of nodes at distance 1 in the tree S1

about its average 〈S1〉. This gives, after dropping all angular
brackets,

dR

dN
= 2R

N
− 3

2

(
1 − 1

N

)
+ S1

2N
. (30)

Defining the average radius r = R/N with initial value r0 =
αN

1/2
0 for large N0, the constant α ∼ O(1) depends on the

precise rule for constructing critical trees. Equation (30) can
be solved to get

r(N ) = 3

2

(
1 − N

N0

)
+ α

N

N
1/2
0

− N

2

∫ N0

N

dy

(
S1

y3

)
. (31)

Bounds on r(N ) can be placed based on the fact that 1 � S1 <

N to get

1 + α

(
N

N
1/2
0

)
− N

2N0
< r

� 3

2

(
1 − N

N0

)
+ α

(
N

N
1/2
0

)
− 1

4N
+ N

4N2
0

. (32)

These bounds are tested against numerical data in Fig. 8
showing excellent agreement, up until the regime where N

becomes small compared to N
1/2
0 . At that point mean-field

theory breaks down. As the trees start to exit the mean-field
regime, their average radius becomes order unity even for
N ∼ N

1/2
0 → ∞. Figure 9 shows the evolution of the average

number of nodes at distances 1, 2, 3, and 4 from the root,
(S1, S2, S3, and S4, respectively). At N = N

1/2
0 , S1 becomes

the largest shell, and S2 seems to be exactly equal to S1 at that
point. All other shells vanish compared to S1 for smaller N .
This is the origin of the finite radius of renormalized trees near
the end of the mean-field regime.
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FIG. 8. (Color online) Mean radius r of trees as a function of
N/N

1/2
0 . Agreement with Eq. (32) is excellent with α = 1.7 as

indicated. Fluctuations cannot be ignored for small N/N
1/2
0 when

mean-field theory breaks down and the bounds are no longer valid.

J. Distribution of last sizes and the star regime

Before the network reaches the trivial fixed point at N = 1
it must first turn into a star. The star eventually collapses into
a single node when the central node is hit as the target.

We define the quantity N� to be the size of the network
one step before it dies. Figure 10 shows an FSS plot for
the probability distribution of N�. More precisely, it shows
N1.4

� p(N�) against N�/N
1/4
0 . The data collapse seen suggests

a scaling form

p(N�) ∼ 1

Nτ
�



(
N�

/
ND

0

)
, (33)

FIG. 9. (Color online) The evolution of the number of nodes in
the first four shells as a function of N/N

1/2
0 for two different system

sizes. Note that S1 crosses S2 to become the largest shell at N = N
1/2
0 .

The other shells vanish increasingly faster as N decreases further.

FIG. 10. (Color online) FSS analysis for the distribution of last
sizes based on Eqs. (34)–(36) with τ = 1.4 ± 0.1 and D = 0.25 ±
0.07. In view of the comment after Eq. (34), p(N�) is replaced with
p(N�)/2 for N� = 2.

with τ = 1.4 ± 0.1, D = 0.25 ± 0.05. The scaling function

(x) seems to approach a constant for x → 0, suggest-
ing that p(N�) tends to a power law, p(N�) ∼ N−τ

� , for
N� � N

1/4
0 .

From the distribution of N� we can determine the distri-
bution of sizes when the tree first turns into a star. Let us
call s the size when the renormalized tree first reaches a star
configuration, and ps(s) its distribution. In each subsequent
time step the star can either shrink by exactly one node
(probability 1 − 1/N ), or it can be reduced immediately to
a single node (probability 1/N). Starting with a star of size s,
the conditional probability to end up at final size N� is

p(N�|s) =

⎧⎪⎪⎨
⎪⎪⎩

1
s
, N� = s,∏s−N�

t=1
s−t

s−t+1
1
N�

= 1
s
, 2 < N� < s,

2
s
, N� = 2,

(34)

where the last line comes from the degeneracy of a star with
two nodes and is required for proper normalization. Assuming
that ps(s) has a scaling form with possibly new exponents and
a new scaling function φ

ps(s) ∼ 1

sα
φ
(
s
/
N

β

0

)
, (35)

we obtain

p(N�) =
∑
s�N�

p(N�|s)ps(s)

≈
∫ ∞

N�

ds
φ
(
s
/
N

β

0

)
s1+α

= 1

Nα
�

�
(
N�

/
N

β

0

)
, (36)

with �(x) = xα
∫ ∞
x

dx ′ φ(x ′)/x ′1+α . This agrees with
Eq. (33), if we identify α = τ , β = D, and �(x) = 
(x).
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Thus the distributions of s and of N� have the same exponents,
if they obey FSS, which we verified numerically.

IV. CONCLUSION

To study invariant properties of graphs under coarse
graining, we have introduced the RSR method, where in each
step only a part of the network within a fixed distance b from a
randomly chosen node collapses into one node. RSR is easy to
implement and eliminates the problem of finding an optimum
tiling of the network. In addition, the small effect of each
decimation gives a much more detailed statistical picture of
the renormalization flow. We applied the RSR with b = 1
to critical trees and derived results analytically, finding good
agreement with numerical simulations.

Under renormalization a critical regime appears when the
size of the tree N ∼ Nν

0 with ν = 1/2. The behavior of the tree
before this regime is reached is described using a mean-field
theory based on generating functions. There is a constant
c � 1 such that the degree distribution of the network is
scale free, pk ∼ k−γ with γ = 2, in the limit N0 → ∞ and
N/N

1/2
0 = c. Both the variance of the degree distribution σ 2

and the maximum degree in the network kmax diverge as N
1/2
0

in this limit. Both of these quantities are described by crossover
functions exhibiting FSS that connect the mean-field regime
to a regime for N

1/4
0 � N � N

1/2
0 when hubs start to emerge.

Results from numerical simulations agree with a scaling theory
we develop to describe this fixed point. Trees are short and fat
near this point with an average depth O(1). As RSR proceeds
further, star configurations start to appear for N ∼ N

νstar
0 with

νstar ≈ 1/4. The distribution of star sizes seems to obey FSS,
characterized by its own critical exponents, which we were not
able to derive analytically.

We began this investigation to study in a more controlled
way claims made in the literature about real-space renormal-
ization of complex networks [6,14,15]. In the most detailed
previous study [14,15] many of the findings are similar to
ours, with the caveat that unlike previous works, the results
presented here are for critical trees rather than for general
networks. The most striking and robust agreement is the
emergence of hubs under renormalization, which leads to a
final star regime. Associated with the emergence of hubs is a
fixed point that gives rise to a power-law degree distribution.

An alternative way to describe RSR is the following:
Instead of removing nodes in each coarse-graining step and

replacing them by a new “super” node, we keep them and
join them into a cluster. At each subsequent RSR step, entire
clusters are joined into new “superclusters.” This process,
where clusters grow by attaching to all the neighbors is an
aggregation process [23] is called “agglomerative percolation”
(AP) in Ref. [24]. The original network has only clusters of
size 1, but larger and larger clusters appear as the RG flow
goes on. At the critical point, an infinite cluster (in the limit
N0 → ∞) appears. In this interpretation, the critical behavior
seen in this paper (and in Refs. [14,15]) is just a novel type of
percolation.

If the original network is a simple chain, the probability
distribution to find any sequence of masses for any b, initial
size N0, and time t have been derived exactly. In this case, AP
exhibits critical exponents different from ordinary percolation.
These exponents depend on b [23]. In two dimensions on
a square lattice, AP is in a different universality class than
ordinary percolation [24].

In future work [26] we plan to study RSR on networks
that are more complex than trees. For Erdös-Renyi graphs
we have found a fixed point at finite ratio N/N0 associated
with the emergence of hubs, which in the case of critical
trees and of simple chains is driven to zero. This difference
between trees and Erdös-Renyi graphs is intuitively most easily
understood in the percolation picture discussed above. Trees
having topological dimension 1, any percolation transition on
them can only happen when the probabilities for establishing
bonds goes to 1.

It remains to be seen whether RSR (or equivalently AP)
can be used as a generic tool to uncover universality classes
in large networks (in the usual RG sense) by eliminating
irrelevant degrees of freedom. On a more speculative note, our
results point to another way to create scale-free networks that is
not based on an explicit generative mechanism for power-law
behavior at the microscopic scale, but result from hubs being
aggregates of many microscopic nodes. That would suggest
the view that networks are emergent collections of smaller
networks made up of even smaller ones down to the lowest
scales.
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