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A. CODING FOR SOURCE-CHANNEL PAIRS

In many communication problems the source output is not simply one of M equally

ly messages and the user is not merely interested in the probability that the received

information is right or wrong. More generally, a

source may have any probability distribution P(w)

defined over its possible outputs, and the system

performance may be measured by the average value

of a distortion function d(wi, w ) which gives the

distortion to the user when w. is transmitted but

decoded as w.. The problem of communicating the
J

output of such a source over a given channel with

minimum distortion is being studied in this research.

XV-1. Performance curve Unlike previous work, which separated the coding

for source trans- operation into two parts, a source representation

1W. problem2 and a channel coding problem, we shall

consider the coding operation as one process.

The performance curve is defined for a given source-channel pair as the minimum

obtainable distortion, using a direct source to channel encoder which operates on a block

of source outputs of length n. A typical curve is shown in Fig. XV-1. If the capacity

of the channel r is C, it is known from Shannon's earlier results that d(C), the value

of distortion at the rate C on the rate-distortion curve for the source 3, provides a

lower bound to the performance curve. It is also shown by Shannon to be obtainable,

therefore it must be the limit of the performance curve as n becomes large.

A stronger lower bound has been derived which, unlike Shannon's, is a function of n
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and therefore provides information about the rate of approach of the performance curve

to its limiting value as n increases. The derivation is summarized below.

1. Lower Bound to D(n)

The first step in the derivation is an application of sphere-packing ideas used many

times before in Information Theory. If a source word w is transmitted, using a channel

input word x, and two lists are made - one a list of possible decoded words w' ordered

in decreasing distortion d(w, w') from w, and the other a list of channel output words y

ordered in decreasing conditional probability p(y/x) - a lower bound to any obtainable

distortion can be found by evaluating the completely ideal, and unrealizable, situation

wherein channel output words that have higher conditional probabilities are always in

decoding regions that result in lower transmission distortions.

It has been shown by Fano3 that an improvement in this bound can be made if a prob-

ability function f(y), defined over the channel output space Y, is included in the ordering

of channel output words and subsequently varied to obtain the tightest possible bound. We

shall use this idea and order the channel output words according to increasing values of

information difference

f(y)
I(x, y) = In -

- -p(y x)

where

n

f(y) = j f(Yi ) .

To obtain a lower bound, it is necessary to relate members on the list of all possible

decoded words with members on the list of all possible received words (now ordered in

distortion and information difference respectively). This is the "idealized decoder func-

tion" and is defined as that function which maps yj into the w! for which

1 g(w') <  f(y) < I g(w'), (1)
w' E W! yE Y. w' E W'

- 1 - J - i+

where

Y. = {y: I(x,y)< I(x,y)}, (2)

W!= {w:d(w,w') <d(w, w!)}, (3)

W!+ = W!U (the next w' on the list), (4)1+ 1 -
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and where g(w') is a probability function, defined over the decoding space W', that will

be determined later. The function value g(w!) can be interpreted as the total "size", as

measured by f(y), of the subset of Yn that is decoded into w'. That is,

g(w i) = f(y),

1-yE Y (w')

where

Y(w!) {y:decoded into w }.

The lower bound to the distortion that results when the source word w is transmitted

using a channel input word x can now be shown to be

D(w) >, d(I) dF 2 (I) (5)

in which F 2 (I) is the cumulative distribution function of the information difference I(x, y)

when the probability distribution p(y/x) is in effect, and d(I) is the distortion function

implicitly defined by the first inequality of Equation 1 which essentially equates two dis-

tribution functions; one G(d) where

G(d) = Pr (d(w,w') < d)
g(w')

and the other F 1 (I) where

F 1 (I) = Pr (I(x,y) < I).

f(y) -

Since G(d) and F 1 (I) can only be approximated, 4 an upper bound to G(d) is equated to

a lower bound to F 1 (I) to define a function dL(I) satisfying dL(I) < d(I). This is consis-

tant with the inequality in Equation 5. Finally expanding dL(I) in a Taylor series about

E(I) with respect to the cumulative distribution F (I) yields

(i)

D(w) > 5 dL(I) dF (I) = (I-I) dF (I).

i=0

After successive derivatives and central moments are evaluated we obtain the result

D(w) >- j'(s ) - (6)
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where s satisfies
o

1 y"(-l)
1(s ) - s o '(s ) = y'(-l) - in + 0 - , (7)s 2 "(s )

and in which

1(s) = qi i(s), comp (w) = q, (8)

i

y(t) = ciYi(t), comp (x) = c. (9)
i

In Eqs. 8 and 9, Li(s) and ,yi(t) are, respectively, the semi-invariant moment-generating

functions of the random variables d. and I., which have the distribution functions
1 1

Pr (d..ij) = g(w')
1

and

Pr i(Iij) = f(yj).
1

The transmission distortion for the source can be obtained by averaging D(w) over

the entire source space W n . If the code is restricted to be a "fixed-composition" code,
that is, all channel input words have composition c, the averaging can be completed, and

it results in the lower bound

1 y"(-) o i(so) 1
D > i'(s - 1 + 0)+ 0) (10)o 2.. 2 \n(

o sg "(s ) s p"(s

with

2
-s () = Variance [i(s )-s o'(s )],

P(w i )

q = p = (p(wl), p(w 2 ), ... , p(w J ) )

and with s o satisfying Eq. 7.

The lower bound in Eq. 10 is in terms of the vectors g, c, and f which have not yet

been specified. The vectors g and c must be picked to minimize the right side of

Eq. 10, abbreviated D(g, c, f, s ), in order to choose the optimum set of decoding set

sizes and the best channel-input composition. The vector f can be freely chosen, but
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the tightest lower bound results when D(g, c, f, so) is maximized with respect to f. There-

fore

D > min min max D(g, c,f, So). (11)
g c f

As n becomes large, the vectors c and f which provide the bound in Eq. 11

approach the channel input and output probabilities associated with the channel V' when

it is used to capacity, and the vector g approaches the output probability distribution of

the test channel associated with the point (d(c), c) on the rate-distortion curve for S.

For finite, but large n, these vectors could be used in Eqs. 7 and 10 to obtain an approx-

imation to the correct lower bound. The limit, as n increases, of the lower bound is

D(n=0o) > '(o ) ,

where

(so )- so'(So) = -C

which is the correct parametric expression for the distortion at the point (d(c), c) on the

rate-distortion curve for S.2

The previous results can be applied, with obvious modifications, to a communication

system with vector sources and channels and with amplitude continuous sources and chan-

nels. If, in particular, for Gaussian sources and channels the channel-input fixed-

composition requirement is replaced by an input energy constraint, the lower bound to

distortion is the same as that given in Eq. 10, except the term involving - (s ) is not

present. The channel-input composition problem, which is believed to affect only this

term, remains one of the problems under present investigation.

At this point it is not known how well the dependence upon n given in the lower bound

agrees with that of the actual performance curve. To get this information, an upper

bound to the performance curve is also required. Such a bound is now being developed.

R. Pilc
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B. AN UPPER BOUND ON THE DISTRIBUTION OF COMPUTATION FOR
SEQUENTIAL DECODING WITH RATE ABOVE R

comp

A previous report has described the simulation of a sequential decoder operating
at a rate just above Rcomp, the computational cutoff rate of a discrete memoryless chan-
nel. The tail of the cumulative distribution of the number of computations per search
was observed to be Pareto; that is,

pr (C > X) = AX - a (X>> 1), (1)

where A is a constant. The measured Pareto exponent, a, was less than one, and sat-
isfied the relation

Eo (a)0 R 
(2)a

to a good approximation. In (2), R is the code information rate in nats per channel use,
and Eo(a) is a well-known function of a and of the channel input and transition probabil-

ities. In fact it turns out that Rcomp = E (1).

We have obtained by random coding arguments an upper bound on pr(C > X) for rates
in the range Rcomp < R < C, where C is the channel capacity. Previously Savage 3 and
Yudkin 4 have established similar upper bounds for 0 < R < Romp . Jacobs and Berlekamp 5

have obtained a lower bound agreeing asymptotically with (1) and (2) for 0 < R < C. Thus
the asymptotic behavior of the distribution of computation for any rate less than capacity
is now known to be Pareto with exponent given by (2).

1. Outline of the Derivation

In what follows, we will provide a rough outline of the derivation of the bound. A
complete description of tree codes and sequential decoding will not be given here. An
up-to-date description has been given by Wozencraft and Jacobs.Z Suffice it to say that
the decoding procedure is a sequential search through a tree in an attempt to find the
correct path representing the intended information sequence. Decisions are made by
comparing a path metric, which is a function of the received and hypothesized channel
symbol sequences, to a running threshold. The path metric along the correct path tends
to increase, while incorrect path metrics tend to decrease with increasing penetration
into the code tree.

We assume that the decoder employs the Fano algorithm and that the kt h path metric
increment is

p(Yklxk)
Zk = In - R.

f(Yk )
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The spacing between adjacent thresholds is A.

We are concerned with the total number of computations ever done in the incorrect

subset of a reference node on the correct path. The incorrect subset consists of the ref-

erence node plus all nodes on incorrect paths stemming from the reference node. One

computation is said to be done on a node whenever the decoding algorithm visits that node

to examine branches diverging from it or leading to it. This is the usual measure of

computation for purposes of establishing upper bounds. 3 Other definitions are more con-

venient for experimental measurements, but the same asymptotic Pareto distribution is

always observed.1, 7

Each node in the incorrect subset will be labelled by indices (k, n), where I = 0, 1,

2, ... is its depth in the tree measured from the reference node, and n denotes which

node it is at depth k. [n= 1, 2, ... (u-1)u-l 1].

The expression overbounding the number of computations in the incorrect subset of

a reference node depends on three properties of the Fano algorithm which we state here

without further elucidation. A fuller exposition is found in Savage,3 and in Wozencraft

and Jacobs.
6

(1). With a given running threshold in effect, no more than (u+l) computations are

done on any node.

(2). For at least one computation to be done on some node (k, n) when a given running

threshold is in effect, a necessary condition is that the path metric along the path con-

necting node (k, n) to the reference node be everywhere greater than the running threshold.

(3). The running threshold is not eventually reduced by A from its current value

unless the path metric at some node along the entire correct path stemming from the

reference node is less than the current running threshold.

Properties (1), (2), and (3) may be combined to enable us to write a mathematical

expression overbounding C, the total number of computations that must eventually be

done on all nodes in the incorrect subset:

00 00 M(k) [ v hv

C < (u+1) Z S z (n) - mm m , (3)

m=-1 f=0 n=l k=l 0h<o k=l

where M({) = (u-l)u - 1, and S[. ] is the unit step function which is one when its argument

is zero or positive, and zero otherwise. Z and Zk(n) are the kth path metric increments

on the correct path and on the n t h incorrect path, respectively.

The minimum over h in (3) may be removed by the use of a simple union bound:

00 00 00 M() v hv

C < (u+l) S Zk(n) - Z k - m (4)

m=-1 f=0 h=0 n=l k=l k=l

For the upper bound, following Savage, we use a form of the Chebysheff inequality:
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If C is a positive random variable,

Capr(C>L) < - for a > 0. (5)
La

Thus finding a Pareto upper bound on the cumulative distribution of computation is

equivalent to showing that moments of C lower than the ath are bounded for a satis-

fying (2).

The upper bound on Ca is established by a random-coding argument. It is assumed

that the channel is discrete and memoryless, has an input alphabet of P symbols and an

output alphabet of Q symbols and that it is characterized by the set of transition proba-

bilities (qj, i=1, 2 . . . P; j=, 2 . . . , Q. The tree characterizing the code is assumed to

be infinite, implying a convolution code with infinite constraint length . There are u

branches diverging from every node and v symbols of the channel input alphabet for

each branch (the code rate, R, is then 1 In u nats per channel use). Each symbol is

picked statistically independently from a probability distribution (pi,i=1, 2,..., P). Thus

the joint probability is p x k p(x(n)) that during the k t h use of the
t the k us of thchannel a symbol x k is transmitted, a symbol yk is received and that the k symbol on

the n incorrect path up to depth k is xk(n). Similarly, for the first L uses of the chan-

nel, the sequences of symbols may be written as L-component vectors, and the joint

probability measure is

L L L

P LL p( L (n ) ) = P ( p (yo) k p(xk(n)), (6)
k=l k=l k=l

-O

where, for example, x L represents the first L input symbols to the channel. There i.
P

also a probability distribution defined on the channel output symbols f. = p qij

j= 1,2 ..... Q . i= 1 i j

Now since successive uses of the channel are assumed to be statistically independent,

we have from the definitions of Zk(n) and Zk and our joint probability measure that

Cv hv 1
Z (n) -hv Z In f(hv - (-h)R (7)

k=l k=l f( ) p hv hv

for the nth incorrect path at depth k, (n=1,2, ... ,M()).

In bounding Ca we exploit the Chernoff bounding technique, in which the unit step
t

function S[t] is overbounded by e l +a before averaging. The second principal mathe-

matical artifice is the use (on all but the innermost sum on n in (4)) of the following

standard inequality8:
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For a sequence of positive random variables xi),

x )< 7 x provided 0 < a < 1. (8)
i

Then after some algebraic manipulations, we obtain

oo afvR oo ahvR

C <A1 < A e a+l e a+l F(h, a), (9)

=O 0 h= 0

where

Aa
a a+1

1 a

1 -e

which is a constant, and

1a

F(hf) p(Y v Xv (n)) f(Yhv)

F(h, I) ..... •

P (Yhv I v)

It is straightforward to obtain a simple overbound on F(h, f) by using the basic probability

measure (6) and the inequality 8 Ro < :x if 0 < p < 1 and x is a positive random variable.

The bound on F(h, 1) was originally derived by Yudkin. 4 Substitution of this bound in (9),

leads to an infinite sum which converges if

1
R < aE (a)a 0

Q P 1 1+a

where E 0 (a) =-In piq+a Thus Ca, for 0 < a < 1, is bounded if

j=l (i=1

R< 1 E (a). (10)
a o

Condition (10) agrees with the lower-bound condition found by Jacobs and Berlekamp. 5

Thus we have obtained the (asymptotically) tightest possible result. Condition (10) is

also identical to Savage's upper bound for integer values of a.3 Recently, Yudkin has

extended this result to all a > 1.4
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2. Remarks

We may now employ (5) to obtain an upper bound on the distribution of computation.

Over the ensemble of infinite tree codes, pr(C >L) < cPIP, provided R < 1 E (p) and
E (a) P

p > 0. If R , the tightest asymptotic result follows from letting p approach a.

E (a)
o (a),a-E -(a-E)

Thus for R - pr(C > L) < C L (11)a

where E is positive but arbitrarily small. Comparison of our result with the lower

bound of Jacobs and Berlekamp shows that (neglecting E);

-a
pr(C > L) = AL - a  (L>>1).

E (a)
For any R and a such that R - , where A is a finite constant, it can be shown that
E (a) a

approaches C, the channel capacity as a approaches zero.a
Figure XV-2 shows the Pareto exponent a, as a function of R for the communication

1
system described in the previous report, consisting of binary antipodal signalling, white

Gaussian noise channel, matched fil-
2.0 E ter and 8-level output quantizer. The

E 0 db

E _-7db N 0  E 5db only difference is that the outer quan-
1.6 -N. N, tization levels have been changed

from ±2T to ±1. 7 T.9 We are indebted
Z 1.2

1.2 t BOUNDED MEAN to Professor I. Jacobs for providing
._0 -COMPUTATION

UNBOUNDED MEAN these curves. Note the high sensi-
O 0.8 COMPUTATION

Stivity of the Pareto exponent to small

changes in rate, both above and below
0.4

R
comp

We observe that if Romp < R <
oI I II comp

0 0.2 0.4 0.6 0.8 1.0 C, then 0 < a < 1, and the average
CODE RATE, R ( BITS PER CHANNEL USE)

computation is unbounded; however,

Fig. XV-2. Variation of a with R for a white an asymptotically Pareto cumulative
Gaussian noise channel. distribution still exists. For some

applications, operation at a rate

above Rcomp would still be possible (and perhaps feasible). For example, the average

number of computations per digit could be made finite simply by imposing an upper limit

on the allowable number of computations per digit or group of digits, and passing on as

erasures any group of digits for which this limit is exceeded. In such a scheme, periodic

resynchronization or a feedback channel would be necessary to allow the decoder to con-

tinue past a group of "erased" digits. If no gaps in the incoming data stream can be
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tolerated, the erasures may be corrected by an outer level of block encoding and

decoding. As a further feature, the upper limit on computation could be variable, being

made just large enough to enable the number of erasures in a block of the outer code to

be correctable by that code.

Concatenation schemes of this type are being investigated analytically and by sim-

ulation.

D. D. Falconer
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