196 research outputs found

    Challenges in the management of chronic wound infections.

    Get PDF
    ABSTRACT Objectives Chronic wound infections may delay the healing process and are responsible for a significant burden on healthcare systems. Since inappropriate management may commonly occur in the care of these patients, this review aims to provide a practical guide underlining actions to avoid in the management of chronic wound infections. Methods We performed a systematic review of the literature available in PubMed in the last 10 years, identifying studies regarding the management of patients with chronic wound infections. A panel of experts discussed the potential malpractices in this area. A list of 'Don'ts', including the main actions to be avoided, was drawn up using the 'Choosing Wisely' methodology. Results In this review, we proposed a list of actions to avoid for optimal management of patients with chronic wound infections. Adequate wound bed preparation and wound antisepsis should be combined, as the absence of one of them leads to delayed healing and a higher risk of wound complications. Moreover, avoiding inappropriate use of systemic antibiotics is an important point because of the risk of selection of multidrug-resistant organisms as well as antibiotic-related adverse events. Conclusion A multidisciplinary team of experts in different fields (surgeon, infectious disease expert, microbiologist, pharmacologist, geriatrician) is required for the optimal management of chronic wound infections. Implementation of this approach may be useful to improve the management of patients with chronic wound infections

    Inhibition of Feline Immunodeficiency Virus Infectionin Vitroby Envelope Glycoprotein Synthetic Peptides

    Get PDF
    AbstractSixty-six 20- to 23-amino-acid synthetic peptides, partially overlapping by 10–12 amino acids, spanning the entire sequence of the envelope SU and TM glycoproteins of the Petaluma isolate of FIV, have been used to investigate the Env domains involved in viral infection. Peptides 5 to 7, spanning amino acids225E–P264located in a conserved region of the SU protein, and peptides 58 to 61, spanning amino acids757N–P806and encompassing hypervariable region 8 of TM protein, exhibited a remarkable and specific antiviral effect against the homologous and one heterologous isolate, as judged by inhibition of FIV-induced syncytium formation and p25 production in CrFK cells. Peptides 5 and 7, but not peptides 58 and 59, also inhibited viral replication of a fresh FIV isolate on nontransformed lymphoid cells. By flow cytometry, peptides 5, 7, 58, and 59 were shown to bind the surface of FIV permissive cells. The antiviral activity of peptides 5 and 7, however, was time-dependent, as inhibition of FIV replication was seen when the peptides were administered before or within 3 hr after virus inoculation; in contrast, TM peptides 58 and 59 exerted a potent inhibitory effect when added up to 24 hr after virus inoculation. Circular dychroism analysis showed that peptide 5 folds to a helical conformation in the presence of a hydrophobic environment. Although the basis for the antiviral action of the peptides is not understood, our data suggest that the inhibitory peptides may act by interacting with cell-surface molecules involved in viral infection

    Low-dose Aspirin prevents hypertension and cardiac fibrosis when thromboxane A2 is unrestrained.

    Get PDF
    Abstract Enhanced platelet activation has been reported in patients with essential hypertension and heart failure. The possible contribution of platelet-derived thromboxane (TX)A2 in their pathophysiology remains unclear. We investigated the systemic TXA2 biosynthesis in vivo and gene expression of its receptor TP in 22 essential hypertension patients and a mouse model of salt-sensitive hypertension. The contribution of platelet TXA2 biosynthesis on enhanced blood pressure (BP) and overload-induced cardiac fibrosis was explored in mice by treating with low-dose Aspirin, resulting in selective inhibition of platelet cyclooxygenase (COX)-1-dependent TXA2 generation. In essential hypertensive patients, systemic biosynthesis of TXA2 [assessed by measuring its urinary metabolites (TXM) reflecting predominant platelet source] was enhanced together with higher gene expression of circulating leukocyte TP and TGF-β, vs. normotensive controls. Similarly, in hypertensive mice with prostacyclin (PGI2) receptor (IP) deletion (IPKO) fed with a high-salt diet, enhanced urinary TXM, and left ventricular TP overexpression were detected vs. normotensive wildtype (WT) mice. Increased cardiac collagen deposition and profibrotic gene expression (including TGF-β) was found. Low-dose Aspirin administration caused a selective inhibition of platelet TXA2 biosynthesis and mitigated enhanced blood pressure, cardiac fibrosis, and left ventricular profibrotic gene expression in IPKO but not WT mice. Moreover, the number of myofibroblasts and extravasated platelets in the heart was reduced. In cocultures of human platelets and myofibroblasts, platelet TXA2 induced profibrotic gene expression, including TGF-β1. In conclusion, our results support tailoring low-dose Aspirin treatment in hypertensive patients with unconstrained TXA2/TP pathway to reduce blood pressure and prevent early cardiac fibrosis

    Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA

    Get PDF
    INTRODUCTION: KRAS oncogene mutations (MUTKRAS) drive resistance to EGFR inhibition by providing alternative signaling as demonstrated in colo-rectal cancer. In non-small cell lung cancer (NSCLC), the efficacy of treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) depends on activating EGFR mutations (MUTEGFR). However, inhibition of EGFR may select resistant cells displaying alternative signaling, i.e., KRAS, or restoration of EGFR activity due to additional MUTEGFR, i.e., the c.2369C > T (p.T790MEGFR). AIM: The aim of this study was to investigate the appearance of MUTKRAS during EGFR-TKI treatment and their contribution to drug resistance. METHODS: This study used cell-free circulating tumor DNA (cftDNA) to evaluate the appearance of codon 12 MUTKRAS and p.T790MEGFR mutations in 33 advanced NSCLC patients progressing after an EGFR-TKI. RESULTS: p.T790MEGFR was detected in 11 (33.3%) patients, MUTKRAS at codon 12 in 3 (9.1%) while both p.T790MEGFR and MUTKRAS codon 12 were found in 13 (39.4%) patients. Six patients (18.2%) were KRAS wild-type (WTKRAS) and negative for p.T790MEGFR. In 8 subjects paired tumor re-biopsy/plasma samples were available; the percent concordance of tissue/plasma was 62.5% for p.T790MEGFR and 37.5% for MUTKRAS. The analysis of time to progression (TTP) and overall survival (OS) in WTKRAS vs. MUTKRAS were not statistically different, even if there was a better survival with WTKRAS vs. MUTKRAS, i.e., TTP 14.4 vs. 11.4 months (p = 0.97) and OS 40.2 vs. 35.0 months (p = 0.56), respectively. CONCLUSIONS: MUTKRAS could be an additional mechanism of escape from EGFR-TKI inhibition and cftDNA is a feasible approach to monitor the molecular development of drug resistance

    Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM)

    Get PDF
    Management of patients with infections caused by multidrug-resistant organisms is challenging and requires a multidisciplinary approach to achieve successful clinical outcomes. The aim of this paper is to provide recommendations for the diagnosis and optimal management of these infections, with a focus on targeted antibiotic therapy. The document was produced by a panel of experts nominated by the five endorsing Italian societies, namely the Italian Association of Clinical Microbiologists (AMCLI), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Society of Microbiology (SIM), the Italian Society of Infectious and Tropical Diseases (SIMIT) and the Italian Society of Anti-Infective Therapy (SITA). Population, Intervention, Comparison and Outcomes (PICO) questions about microbiological diagnosis, pharmacological strategies and targeted antibiotic therapy were addressed for the following pathogens: carbapenem-resistant Enterobacterales; carbapenem-resistant Pseudomonas aeruginosa; carbapenem-resistant Acinetobacter baumannii; and methicillin-resistant Staphylococcus aureus. A systematic review of the literature published from January 2011 to November 2020 was guided by the PICO strategy. As data from randomised controlled trials (RCTs) were expected to be limited, observational studies were also reviewed. The certainty of evidence was classified using the GRADE approach. Recommendations were classified as strong or conditional. Detailed recommendations were formulated for each pathogen. The majority of available RCTs have serious risk of bias, and many observational studies have several limitations, including small sample size, retrospective design and presence of confounders. Thus, some recommendations are based on low or very-low certainty of evidence. Importantly, these recommendations should be continually updated to reflect emerging evidence from clinical studies and real-world experience

    Synthesis and biological evaluation of new N-alkylcarbazole derivatives as STAT3 inhibitors: preliminary study

    Get PDF
    The signalling pathway of Janus tyrosine Kinases-Signal Transducers and Activators of Transcription (JAKSTAT) is activated by a number of cytokines, hormones (GH, erythropoietin and prolactin), and growth factors. JAK-STAT signalling is involved in regulation of cell proliferation, differentiation and apoptosis. These activities are due to different members of JAK-STAT family consisting of: JAK1, JAK2, JAK3, Tyk2 and STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, STAT6. Recent studies suggest a key role for STAT family proteins, in particular for STAT3, in selectively inducing and maintaining a pro-carcinogenic inflammatory microenvironment, that promote tumour cells transformation. Moreover, a striking correlation between cancer development/progression and STAT3 persistent activation exists, probably due to STAT3 promoting of the pro-oncogenic inflammatory pathways, like NF-kB, IL-6 and JAK family kinases. Recent study demonstrated that carbazoles can inhibit STAT3 mediated transcription. From these evidences, STAT3 represents a therapeutic target, so we have synthesized a new set of N-alkylcarbazole derivatives substituted in positions 2, 4 and 6, to evaluate their activity on STAT3. Some of these compounds showed an interesting activity as STAT3 selective inhibitors; in particular, compounds 9a 9b and 9c revealed to inhibit the STAT3 activation for the 50%, 90% and 95%, respectively
    • …
    corecore