225 research outputs found
Protein surface functionalisation as a general strategy for facilitating biomimetic mineralisation of ZIF-8
The durability of enzymes in harsh conditions can be enhanced by encapsulation within metal-organic frameworks (MOFs) via a process called biomimetic mineralisation. Herein we show that the surface charge and chemistry of a protein determines its ability to seed MOF growth. We demonstrate that chemical modification of amino acids on the protein surface is an effective method for systematically controlling biomimetic mineralisation by zeolitic imidazolate framework-8 (ZIF-8). Reaction of surface lysine residues with succinic (or acetic) anhydride facilitates biomimetic mineralisation by increasing the surface negative charge, whereas reaction of surface carboxylate moieties with ethylenediamine affords a more positively charged protein and hinders the process. Moreover, computational studies confirm that the surface electrostatic potential of a protein is a good indicator of its ability to induce biomimetic mineralisation. This study highlights the important role played by protein surface chemistry in encapsulation and outlines a general method for facilitating the biomimetic mineralisation of proteins
Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries
Understanding the cause of lithium dendrites formation and propagation is essential for developing practical all-solid-state batteries. Li dendrites are associated with mechanical stress accumulation and can cause cell failure at current densities below the threshold suggested by industry research (i.e., >5âmA/cm2). Here, we apply a MHz-pulse-current protocol to circumvent low-current cell failure for developing all-solid-state Li metal cells operating up to a current density of 6.5âmA/cm2. Additionally, we propose a mechanistic analysis of the experimental results to prove that lithium activity near solid-state electrolyte defect tips is critical for reliable cell cycling. It is demonstrated that when lithium is geometrically constrained and local current plating rates exceed the exchange current density, the electrolyte region close to the defect releases the accumulated elastic energy favouring fracturing. As the build-up of this critical activity requires a certain period, applying current pulses of shorter duration can thus improve the cycling performance of all-solid-solid-state lithium batteries.publishedVersio
Multi-layered ZIF-coated cells for the release of bioactive molecules in hostile environments
Published on 01 August 2022Metal-organic framework (MOF) coatings on cells enhance viability in cytotoxic environments. Here, we show how protective multi-layered MOF bio-composite shells on a model cell system (yeast) enhance the proliferation of living cells exposed to hostile protease-rich environments via the dissolution of the shells and release of a protease inhibitor (antitrypsin).Lei Gan, Miriam de J. VelĂĄsquez-HernĂĄndez, Anita Emmerstorfer-Augustin, Peter Wied, Heimo Wolinski, Simone Dal Zilio, Marcello Solomon, Weibin Liang, Christian Doonan, and Paolo Falcar
Continuous-flow synthesis of ZIF-8 biocomposites with tunable particle size
Zeolitic Imidazolate Framework (ZIF) biocomposites show the capacity to protect and deliver bio-therapeutics. To date, the progress in this research area is based on laboratory batch methods. To further explore the potential of ZIF-biocomposites for application to biomedicine and biotechnology, the continuous production of ZIF-biocomposites of specific particle size is desirable. Here we report the first continuous flow synthetic method for the encapsulation of a model protein (bovine serum albumin, BSA) and a clinical therapeutic (Îą1-antitrypsin, AAT) in ZIF-8. We studied the in situ kinetics of nucleation, growth and crystallization of BSA@ZIF-8 by small angle X-ray scattering. By controlling the injection time of ethanol, we could quench the particle growth via ethanol-induced crystallization from amorphous particles to ZIF-8 crystals. The particle size of the biocomposite was tuned in the 40-100 nm range by varying residence time prior to introduction of ethanol. As a proof-of-concept, we used this protocol for the encapsulation of AAT in ZIF-8. Upon release of the bio therapeutic from the composite, the trypsin inhibitor function of AAT was preserved.Francesco Carraro, Jason D. Williams, Mercedes LinaresâMoreau, Chiara Parise ... Christian Doonan ... Paolo Falcaro ... et al
Control of structure topology and spatial distribution of biomacromolecules in Protein@ZIF-8 biocomposites
The protective capacity and applications of biomimetically mineralized biomacromolecule zeolitic imidazolate framework (ZIF) composites are likely dependent on the localization of the biomolecule and the topology of the mineralized ZIF coating. Herein, we identify reaction conditions to reliably yield the porous ZIF-8 sodalite topology (high ZIF-8 precursor concentrations; high 2-methylimidazole:Zn²⺠ratios) in preference to other more dense phases. Furthermore, protocols to universally prepare biocomposites with a range of biomacromolecules are canvassed. Through the use of fluorophore-tagged proteins and confocal laser scanning microscopy (CLSM), we further establish the positioning of biomolecules within ZIF-8 crystals. CLSM reveals subsurface localization with fluorescein-tagged bovine serum albumin (BSA) or full encapsulation with rhodamine Btagged BSA. These observations allowed us to demonstrate that coreâshell ZIF-8 growth strategies afford complete encapsulation with varying thicknesses of potentially active biocomposite or protective ZIF-8. The demonstrated control over ZIF topology (enabling mass transport) and biomacromolecule localization is critical for applications of MOF biocomposites in catalysis.Weibin Liang, Raffaele Ricco, Natasha K. Maddigan, Robert P. Dickinson, Huoshu Xu, Qiaowei Li, Christopher J. Sumby, Stephen G. Bell, Paolo Falcaro and Christian J. Doona
Defining language impairments in a subgroup of children with autism spectrum disorder
Autism spectrum disorder (ASD) is diagnosed on the basis of core impairments in pragmatic language skills, which are found across all ages and subtypes. In contrast, there is significant heterogeneity in language phenotypes, ranging from nonverbal to superior linguistic abilities, as defined on standardized tests of vocabulary and grammatical knowledge. The majority of children are verbal but impaired in language, relative to age-matched peers. One hypothesis is that this subgroup has ASD and co-morbid specific language impairment (SLI). An experiment was conducted comparing children with ASD to children with SLI and typically developing controls on aspects of language processing that have been shown to be impaired in children with SLI: repetition of nonsense words. Patterns of performance among the children with ASD and language impairment were similar to those with SLI, and contrasted with the children with ASD and no language impairment and typical controls, providing further evidence for the hypothesis that a subgroup of children with ASD has co-morbid SLI. The findings are discussed in the context of brain imaging studies that have explored the neural bases of language impairment in ASD and SLI, and overlap in the genes associated with elevated risk for these disorders.M01 RR00533 - NCRR NIH HHS; R01 DC10290 - NIDCD NIH HHS; U19 DC03610 - NIDCD NIH HH
Positioning of the HKUST-1 metal-organic framework (Cu(3)(BTC)(2)) through conversion from insoluble Cu-based precursors
A Cu-based metalâorganic framework (HKUST-1 or Cuâ(BTC)â, BTC = 1,3,5-benzene tricarboxylate) has been synthesized from insoluble Cu-based precursors and positioned on substrates. Patterning of HKUST-1 was achieved through a two-step process: (1) the positioning of the insoluble Cu-based ceramic precursors on substrates using a solâgel solution, and (2) the subsequent conversion into HKUST-1 by treatments with an alcoholic solution containing 1,3,5-benzene tricarboxylic acid (H3BTC) at room temperature for 10 min. This technique has been found to be suitable for both inorganic and polymeric substrates. The HKUST-1 pattern on a polymer film can be easily bent without affecting the positioned MOFs crystals. This approach would allow for versatile and practical applications of MOFs in multifunctional platforms where the positioning of MOFs is required.Takashi Toyao, Kang Liang, Kenji Okada, Raffaele Ricco, Mark J. Styles, Yasuaki Tokudome, Yu Horiuchi, Anita J. Hill, Masahide Takahashi, Masaya Matsuoka and Paolo Falcar
Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment
Peer reviewedPublisher PD
Self-assembly of oriented antibody-decorated metalâorganic framework nanocrystals for active-targeting applications
Vol. 34(21) pp 2106607-1 - 2106607-7Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Znâ(mIMâ(COâ), from a solution of Zn²⺠and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.Karen Alt, Francesco Carraro, Edwina Jap, Mercedes Linares-Moreau, Raffaele Riccò, Marcello Righetto, Marco Bogar, Heinz Amenitsch, Rania A. Hashad, Christian Doonan, Christoph E. Hagemeyer, and Paolo Falcar
- âŚ