5 research outputs found

    Vulnerability to crop-raiding: an interdisciplinary investigation in Loango National Park, Gabon

    Get PDF
    Human-wildlife conflict is a major threat to long-term wildlife survival and to subsistence communities’ livelihoods in developing countries, particularly near protected areas. In this thesis, I use an interdisciplinary approach based on a threefold vulnerability framework to examine the specific issue of crop-raiding in Loango National Park, Gabon. First, I investigate the context of conservation at the study site, and how this limits, or intensifies, conflict over wildlife. People in Loango have an understanding of sustainability that shares common ground with modern conservation principles. However, local people resent and resist current conservation practices, which exclude local communities, threaten local environmental entitlement and thus exacerbate institutional vulnerability to crop-raiding. Next, I examine biophysical vulnerability to crop-raiding and find that elephants cause the most crop damage in Loango. Crop-raiding by elephants, when considered at the scale of the study site, follows a seasonal pattern which probably results from elephants’ use of water points. However, field isolation and surrounding forest types render some fields more vulnerable than others. Farmers use diverse deterrent methods to limit raids, but none seem effective. The lack of efficacy of deterrents stems from lack of access to labour, driven by rural exodus, which prevents their successful implementation. State mitigation strategies exist but are inadequate and ineffective. Demographic changes also make farmers increasingly vulnerable to poverty, which ultimately increases social vulnerability to crop-raiding. The consequences of crop-raiding, which span from increased food and economic insecurity to social marginalisation, create a negative spiral of vulnerability to poverty and to crop-raiding. Ultimately, spatial and social isolation are the main factors driving vulnerability to crop-raiding in Loango, and both need to be addressed. Vulnerability proves to be a very appropriate analytical framework for the holistic investigation of crop-raiding, and I recommend its use in future research on human-wildlife conflicts and in conservation

    Detectability and impact of repetitive surveys on threatened West African crocodylians

    Get PDF
    West African crocodylians are among the most threatened and least studied crocodylian species globally. Assessing population status and establishing a basis for population monitoring is the highest priority action for this region. Monitoring of crocodiles is influenced by many factors that affect detectability, including environmental variables and individual- or population-level wariness. We investigated how these factors affect detectability and counts of the critically endangered Mecistops cataphractus and the newly recognized Crocodylus suchus. We implemented 195 repetitive surveys at 38 sites across Côte d’Ivoire between 2014 and 2019. We used an occupancy-based approach and a count-based GLMM analysis to determine the effect of environmental and anthropogenic variables on detection and modeled crocodile wariness over repetitive surveys. Despite their rarity and level of threat, detection probability of both species was relatively high (0.75 for M. cataphractus and 0.81 for C. suchus), but a minimum of two surveys were required to infer absence of either species with 90% confidence. We found that detection of M. cataphractus was significantly negatively influenced by fishing net encounter rate, while high temperature for the previous 48 h of the day of the survey increased C. suchus detection. Precipitation and aquatic vegetation had significant negative and positive influence, respectively, on M. cataphractus counts and showed the opposite effect for C. suchus counts. We also found that fishing encounter rate had a significant negative effect on C. suchus counts. Interestingly, survey repetition did not generally affect wariness for either species, though there was some indication that at least M. cataphractus was more wary by the fourth replicate. These results are informative for designing future survey and monitoring protocols for these threatened crocodylians in West Africa and for other endangered crocodylians globally

    Pangolins in global camera trap data: Implications for ecological monitoring

    Get PDF
    Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (<0.05) for all species. Occupancy was associated with distance from rivers for M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts

    Pangolins in Global Camera Trap Data: Implications for Ecological Monitoring

    Get PDF
    Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts
    corecore