11 research outputs found

    VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

    Full text link
    We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes.Comment: Accepted for MICCAI 202

    VesselVAE: Recursive Variational Autoencoders for 3D Blood Vessel Synthesis

    Get PDF
    We present a data-driven generative framework for synthesizing blood vessel 3D geometry. This is a challenging task due to the complexity of vascular systems, which are highly variating in shape, size, and structure. Existing model-based methods provide some degree of control and variation in the structures produced, but fail to capture the diversity of actual anatomical data. We developed VesselVAE, a recursive variational Neural Network that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the VesselVAE latent space can be sampled to generate new vessel geometries. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels. We achieve similarities of synthetic and real data for radius (.97), length (.95), and tortuosity (.96). By leveraging the power of deep neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. Keywords: Vascular 3D model

    Bilateral pheochromocytoma after kidney transplantation in neurofibromatosis type 1

    No full text
    We present the case of a 25-year-old male with a history of neurofibromatosis type 1 and bilateral pheochromocytoma 4 years after kidney transplantation that was successfully treated with simultaneous bilateral posterior retroperitoneoscopic adrenalectomy

    Elgar Encyclopedia in Urban and Regional Planning and Design

    No full text

    How stem cells speak with host immune cells in inflammatory brain diseases

    No full text
    corecore