118 research outputs found

    An efficient algorithm for nucleolus and prekernel computation in some classes of TU-games

    Get PDF
    We consider classes of TU-games. We show that we can efficiently compute an allocation in the intersection of the prekernel and the least core of the game if we can efficiently compute the minimum excess for any given allocation. In the case where the prekernel of the game contains exactly one core vector, our algorithm computes the nucleolus of the game. This generalizes both a recent result by Kuipers on the computation of the nucleolus for convex games and a classical result by Megiddo on the nucleolus of standard tree games to classes of more general minimum cost spanning tree games. Our algorithm is based on the ellipsoid method and Maschler's scheme for approximating the prekernel. \u

    Computing an element in the lexicographic kernel of a game

    Get PDF
    The lexicographic kernel of a game lexicographically maximizes the surplusses sijs_{ij} (rather than the excesses as would the nucleolus). We show that an element in the lexicographic kernel can be computed efficiently, provided we can efficiently compute the surplusses sij(x)s_{ij}(x) corresponding to a given allocation xx. This approach improves previously obtained results and allows us to determine a kernel element without appealing to Maschler transfers in the execution of the algorithm. \u

    The Least-core and Nucleolus of Path Cooperative Games

    Full text link
    Cooperative games provide an appropriate framework for fair and stable profit distribution in multiagent systems. In this paper, we study the algorithmic issues on path cooperative games that arise from the situations where some commodity flows through a network. In these games, a coalition of edges or vertices is successful if it enables a path from the source to the sink in the network, and lose otherwise. Based on dual theory of linear programming and the relationship with flow games, we provide the characterizations on the CS-core, least-core and nucleolus of path cooperative games. Furthermore, we show that the least-core and nucleolus are polynomially solvable for path cooperative games defined on both directed and undirected network

    On Linear Programming Duality and Necessary and Sufficient Conditions in Minimax Theory

    Get PDF
    In this paper we discuss necessary and sufficient conditions for different minimax results to hold using only linear programming duality and the finite intersection property for compact sets. It turns out that these necessary and sufficient conditions have a clear interpretation within zero-sum game theory. We apply these results to derive necessary and sufficient conditions for strong duality for a general class of optimization problems

    Order cones: A tool for deriving k-dimensional faces of cones of subfamilies of monotone games

    Get PDF
    In this paper we introduce the concept of order cone. This concept is inspired by the concept of order polytopes, a well-known object coming from Combinatorics. Similarly to order polytopes, order cones are a special type of polyhedral cones whose geometrical structure depends on the properties of a partially ordered set (brief poset). This allows to study these properties in terms of the subjacent poset, a problem that is usually simpler to solve. From the point of view of applicability, it can be seen that many cones appearing in the literature of monotone TU-games are order cones. Especially, it can be seen that the cones of monotone games with restricted cooperation are order cones, no matter the structure of the set of feasible coalitions

    Soluble CD44 Interacts with Intermediate Filament Protein Vimentin on Endothelial Cell Surface

    Get PDF
    CD44 is a cell surface glycoprotein that functions as hyaluronan receptor. Mouse and human serum contain substantial amounts of soluble CD44, generated either by shedding or alternative splicing. During inflammation and in cancer patients serum levels of soluble CD44 are significantly increased. Experimentally, soluble CD44 overexpression blocks cancer cell adhesion to HA. We have previously found that recombinant CD44 hyaluronan binding domain (CD44HABD) and its non-HA-binding mutant inhibited tumor xenograft growth, angiogenesis, and endothelial cell proliferation. These data suggested an additional target other than HA for CD44HABD. By using non-HA-binding CD44HABD Arg41Ala, Arg78Ser, and Tyr79Ser-triple mutant (CD443MUT) we have identified intermediate filament protein vimentin as a novel interaction partner of CD44. We found that vimentin is expressed on the cell surface of human umbilical vein endothelial cells (HUVEC). Endogenous CD44 and vimentin coprecipitate from HUVECs, and when overexpressed in vimentin-negative MCF-7 cells. By using deletion mutants, we found that CD44HABD and CD443MUT bind vimentin N-terminal head domain. CD443MUT binds vimentin in solution with a Kd in range of 12–37 nM, and immobilised vimentin with Kd of 74 nM. CD443MUT binds to HUVEC and recombinant vimentin displaces CD443MUT from its binding sites. CD44HABD and CD443MUT were internalized by wild-type endothelial cells, but not by lung endothelial cells isolated from vimentin knock-out mice. Together, these data suggest that vimentin provides a specific binding site for soluble CD44 on endothelial cells

    Memory B cells activate brain-homing, autoreactive CD4(+) T cells in multiple sclerosis

    Get PDF
    Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as “autoproliferation” of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies
    • …
    corecore