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SUMMARY

Multiple sclerosis is an autoimmune disease that is
caused by the interplay of genetic, particularly the
HLA-DR15 haplotype, and environmental risk fac-
tors. How these etiologic factors contribute to
generating an autoreactive CD4+ T cell repertoire is
not clear. Here, we demonstrate that self-reactivity,
defined as ‘‘autoproliferation’’ of peripheral Th1 cells,
is elevated in patients carrying the HLA-DR15
haplotype. Autoproliferation is mediated by memory
B cells in a HLA-DR-dependent manner. Depletion of
B cells in vitro and therapeutically in vivo by anti-
CD20 effectively reduces T cell autoproliferation.
T cell receptor deep sequencing showed that
in vitro autoproliferating T cells are enriched for
brain-homing T cells. Using an unbiased epitope
discovery approach, we identified RASGRP2 as
target autoantigen that is expressed in the brain
and B cells. These findings will be instrumental
to address important questions regarding patho-
genic B-T cell interactions in multiple sclerosis and
possibly also to develop novel therapies.

INTRODUCTION

Multiple sclerosis (MS) is considered a prototypic organ-specific

autoimmune disease. It mainly affects young adults and approx-

imately 2.5 million people worldwide. Patients often develop
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impairments of visual, sensory, motor, neurocognitive, and

autonomic functions. Its etiology involves a complex genetic trait

with >100 quantitative trait loci (Beecham et al., 2013; Sawcer

et al., 2011), most importantly the HLA-DR15 haplotype, for

which an association with MS has already been described in

1973 (Jersild et al., 1973). Since HLA-class II molecules restrict

CD4+ T cells, the genetic association provides a strong argument

for the central role of adaptive immunity and CD4+ T cells in MS.

Yet, how HLA-DR15 and other risk alleles induce and sustain MS

is incompletely understood including the lack of an autoantigen

unequivocally associated with MS pathogenesis. Epstein-Barr

virus (EBV) infection, low vitamin D3, smoking, and obesity

(Olsson et al., 2017) have been identified as environmental risk

factors, and genes and environment likely act in concert to

trigger an autoimmune reaction against CNS tissue (Dendrou

et al., 2015; Sospedra and Martin, 2005).

The vast majority of MS risk-conferring genes including HLA-

DR15 are immune function related, while CNS-related genes

are remarkably absent (Beecham et al., 2013; Sawcer et al.,

2011). Considering data from the animal model of MS, experi-

mental autoimmune encephalitis (EAE) (Dendrou et al., 2015;

Goverman, 2009; Sospedra and Martin, 2005), there is now

compelling evidence that MS is an autoimmune disease with

dysregulated adaptive immunity at its core. Findings from EAE

and blood cells of MS patients together with the strong genetic

HLA-DR15 association hint at the importance of myelin-reactive

CD4+ T cells (Sospedra and Martin, 2005). However, character-

ization of CNS-infiltrating immune cell populations and experi-

ence from B cell-depleting therapies suggest that CD8+ T cells,

proinflammatory B cells, and autoantibodies are likely also

involved (Dendrou et al., 2015; Hauser et al., 2008; Li et al.,
tember 20, 2018 ª 2018 The Authors. Published by Elsevier Inc. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:roland.martin@usz.ch
https://doi.org/10.1016/j.cell.2018.08.011
http://creativecommons.org/licenses/by-nc-nd/4.0/


(legend on next page)

2 Cell 175, 1–16, September 20, 2018

Please cite this article in press as: Jelcic et al., Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis, Cell
(2018), https://doi.org/10.1016/j.cell.2018.08.011



Please cite this article in press as: Jelcic et al., Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis, Cell
(2018), https://doi.org/10.1016/j.cell.2018.08.011
2015; Sospedra andMartin, 2005). A central question is how dis-

ease-relevant T and B cells interact.

Starting fromMS risk genes involved in T cell activation, differ-

entiation, and homeostasis and the prominent role of HLA-DR15,

we searched for experimental systems to approach this issue.

The observation that myelin-specific T cell clones can be acti-

vated by antigen-presenting cells (APCs) in the absence of exog-

enous nominal antigen and the involvement of CD4, HLA-class II,

and self-peptides provided the basis for such a system (Cai and

Hafler, 2007; Kondo et al., 2001). Further, in MS reduced thymic

output of T cells (Duszczyszyn et al., 2006; Hug et al., 2003),

alterations in T regulatory cells (Carbone et al., 2014), increased

T cell proliferation and related signatures (Carbone et al., 2014;

Tuller et al., 2013), decreased autologous mixed lymhocyte

reaction (AMLR) (Hafler et al., 1985), and reduced T cell receptor

(TCR) repertoire diversity (Laplaud et al., 2004; Muraro et al.,

2005) indicate perturbed T cell homeostasis. In distinction to

the defective AMLR, which was shown to be altered not only in

MS, but also in other autoimmune diseases like rheumatoid

arthritis already three decades ago (Kitas et al., 1988) and which

remained unexplained, we recently showed that spontaneous

in vitro T cell proliferation is increased in MS patients (Mohme

et al., 2013). We refer to this phenomenon as ‘‘autoproliferation’’

(AP). The HLA-DR15 haplotype and DR15-presented self-

peptides take part in this process (Mohme et al., 2013), but which

cells induce and maintain T cell proliferation and whether AP

T cells may be pathogenic are unknown. Here, we characterized

in detail the cellular interactions that lead to increased AP and

provide evidence for its potential involvement in MS.

RESULTS

AP Increases during Remission
Based on the increased AP inMS patients using thymidine incor-

poration (Mohme et al., 2013), we developed a carboxyfluores-

cein diacetate N-succinimidyl ester (CFSE)-labeling protocol,

which allows characterization of AP (CFSEdim) and non-prolifer-

ating (CFSEhi) cell populations (Figure 1A) and correlates well

with thymidine incorporation (Figure S1A). It is important to

note that we cultured peripheral blood mononuclear cells

(PBMCs) without stimulus and under serum-free conditions.

With this assay, we examined AP in a first cohort of 32 healthy

donors (HDs) and 50 untreated relapsing-remitting MS (RRMS,
Figure 1. AP of Peripheral Lymphocytes Increases during REM and De

(A) Workflow for assessing AP in vitro using CFSE-labeled PBMCs in serum-free

(B) Proportion of B and T cells among CFSEdim (AP) cells (mean; n = 82 RRMS a

(C–E) CD4/CD8 ratio of T cells (C), naive/memory (D), and activated HLA-DR-expr

RRMS and HDs; in C and E, whiskers: min-max; in D, mean). T cell subsets:

CD45RA+CCR7–.

(F) AP of HDs (n = 32) and untreated patients with RRMS (n = 50), psoriasis (n =

(G and H) Frequency of all (CFSEdim) (G) or only high (CFSElow) (H) AP cells for HD

n = 32) (mean ± SEM; Kruskal-Wallis test).

(I) AP in HLA-DR15� and DR15+ HDs (n = 32), REL (n = 18), and REM (n = 32) (m

(J) Frequency of AP CD4+ and CD8+ T cells in HLA-DR15� (n = 15) and DR15+ (n

(K) AP of T cells upon blocking HLA-DR, CD4, or with isotype controls (mean ± S

(L) Phosphorylation of CD3z and ZAP-70 in AP T cells. Representative example

(M) AP of T cells with and without treatment with the selective LCK inhibitor PP1

See also Figures S1 and S2 and Tables S1, S2, and S3.
nihil) patients (Table S1). 24.1% of AP cells were B cells

(CD19+), 43.6% T cells (CD3+), with a higher proportion of

CD4+ than CD8+ T cells, and 32.3% unknown cells (Figures

1B, 1C, S1B, and S1C). AP T cells showed an effector memory

and highly activated phenotype with strong upregulation of

surface HLA-DR with increasing cycles of division (Figures 1D

and 1E). Similar to our previous study (Mohme et al., 2013), we

confirmed a higher frequency of individuals with stronger AP in

the MS group as compared to HDs and also to two other

organ-specific autoimmune diseases, psoriasis or Crohn’s

disease (Figure 1F). Interestingly, when the AMLR was investi-

gated in psoriasis and Crohn’s disease, it also did not differ

from HDs (Davidsen and Kristensen, 1986; Schopf et al., 1986),

while it is defective in MS (Hafler et al., 1985).

Next, we explored the association between AP in HDs and

RRMS disease stages, i.e., active (relapse; REL, nihil) or inactive

(remission; REM, nihil). Interestingly, we observed higher fre-

quencies of AP cells independent of the rounds of cell division

in REM compared to HDs and REL, as well as increased fre-

quencies of AP effector memory T cells in REM compared to

HDs (Figures 1G, 1H, and S1D–S1G).We confirmed these results

in a second cohort comparing AP with other methods of B or

T cell activation in HDs and REM. In contrast to AP and a-immu-

noglobulinM (IgM) stimulation, T cell activation by a foreign recall

antigen (tetanus toxoid), allogeneic mixed lymphocyte reaction

(MLR) or phytohemagglutinin (PHA) did not differ between HDs

and REM (Figure S2A).

HLA-DR-TCR Interactions Are Essential for AP
In line with our previous data (Mohme et al., 2013), HLA-DR15+

HDs and REM showed increased AP (Figure 1I). Further, we

now found that AP CD4+ but not CD8+ T cells are increased in

HLA-DR15+ compared to HLA-DR15� REM (Figure 1J). Given

the multifactorial etiology of MS, we genotyped REM and HDs

to examine 134 published non-HLA MS risk-associated SNPs

(Beecham et al., 2013; Sawcer et al., 2011) and compared their

effect to that of HLA-DR15 on AP. Probably due to the small

sample size, our results do not support a significant contribution

neither for single MS risk SNPs nor for a MS risk score derived

from 102 of these risk variants, yet confirmed a significant asso-

ciation between HLA-DR15 and AP (Table S2 and Table S3).

The strong upregulation of HLA-DR on B cells during AP

(Mohme et al., 2013) and the above association with the
pends on CD4-HLA-DR-TCR Interactions

medium and in the absence of exogenous stimulus for 7 days.

nd HDs).

essing (E) CD4+ and CD8+ T cells in CFSEhi, CFSEmid, and CFSElow cells (n = 20

Tnaive CD45RA+CCR7+; TCM CD45RA–CCR7+; TEM CD45RA–CCR7–; TTEMRA

10), and Crohn’s disease (CD; n = 7) (mean ± SEM).

s (n = 32), untreated RRMS patients in relapse (REL; n = 18) or remission (REM;

ean ± SEM; Kruskal-Wallis test).

= 17) REM (mean ± SEM; Mann-Whitney U test).

EM; n = 5 REM; Mann-Whitney U test).

out of 3 REM are shown.

(mean ± SEM; n = 4 REM; Mann-Whitney U test).
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Figure 2. AP Involves Classical and Non-classical Th1 Cells with Increased Proinflammatory Responses in MS

(A) AP (%CFSEdim) and cytokine secretion profile for each donor (n = 32 HDs; n = 32 REM) after 7-day culture. Subject values are organized according to their AP

strength. The graphs under the heatmap represent the mean cytokine secretion in supernatants (mean ± SEM; Mann-Whitney U test).

(B) Mean cytokine response following AP in the presence of blocking HLA-DR, CD4, or isotype controls (n = 5 REM).

(C) Intracellular IFN-g and phosphorylation of STAT1 in CFSEhi and CFSEdim (AP) T cells. Representative example out of 5 REM.

(D) Proportion of CD4 and CD8 subsets in AP IFN-g+ T cells (mean ± SEM; n = 5 REM; Mann-Whitney U test).

(legend continued on next page)
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HLA-DR15 haplotype indicated that interactions between HLA-

DR on B cells and TCR/CD4 on T cells might be involved in AP.

This was confirmed by the strong inhibitory effects of antibody

blocking of both HLA-DR as reported previously (Mohme et al.,

2013), but also of CD4 (Figure 1K). Phosphorylation of the TCR-

associated CD3 zeta chain (CD3z) and the CD3 zeta chain-asso-

ciated protein 70 (ZAP-70) in AP T cells (Figure 1L) as well as the

involvement of lymphocyte-specific protein tyrosine kinase (LCK)

(Figure 1M) show that TCR and self-peptide/HLA-class II interac-

tions participate in inducing and/or sustaining AP.

Classical and Non-classical Th1 Cells Are Involved in AP
Next, we addressed which functional phenotypes are involved

in increased AP in REM. Culture supernatants after AP

contained particularly high amounts of interferon (IFN)-g,

increased interleukin-2 (IL-2), IL-13, IL-21, and granulocyte-

macrophage colony-stimulating factor (GM-CSF) in REM

compared to HDs and either low or absent IL-5 and IL-17 (Fig-

ure 2A). In contrast to AP, IFN-g secretion upon activation with

conventional T cell stimuli did not differ between HDs and REM

(Figure S2B). IFN-g correlated best with AP (Figure 2A) and

was higher in HLA-DR15+ individuals (Figure S2C). Cytokines

dropped after blocking either HLA-DR or CD4, whereas

in vitro neutralization of IFN-g and GM-CSF did not inhibit AP

indicating that cytokine production is a consequence of AP

(Figures 2B and S2D).

Intracellular cytokine staining confirmed that AP CD4+ T cells

mainly express IFN-g and, consistent with a Th1 phenotype,

also show STAT1 signaling (Figures 2C and 2D). The predomi-

nant proinflammatory Th1-like phenotype in AP CD4+ T cells of

REM is supported by RNA sequencing, which shows significant

upregulation of Th1-specific markers such as TBX21 (T-bet),

CXCR3, and IFNG (Figure 2E). Th2 and Th17 markers such as

GATA3, IL4 or RORC, and IL17Awere absent or not differentially

expressed, but other Th17-specific markers such as AHR and

BATF as well as CSF2 (GM-CSF) were upregulated. In line with

these findings, we observed high frequencies of CXCR3+ CD4+

T cells expressing the Th17-associated chemokine receptor

CCR6 in the AP compartment (Figure 2F), referred to as non-

classical Th1 cells (i.e., Th1/Th17 or exTh17-Th1) (Geginat

et al., 2013). These cells were shown to be polyfunctional and

increased inMS (Paroni et al., 2017), and both chemokine recep-

tors, CXCR3 and CCR6, are involved in brain homing of T cells

(Balashov et al., 1999; Reboldi et al., 2009). Consistent with

in vivo results (Basdeo et al., 2017), we observed higher AP in

classical and non-classical Th1 cells (Figure 2F). Whether

expression of Th17-specific markers and GM-CSF marks a

distinct T helper cell subset (Geginat et al., 2013; Hartmann

et al., 2014) originating from Th17 cells or is part of pathogenic

Th1 differentiation is currently not clear, but our findings under-
(E) RNA sequencing data of sorted CFSEhi and CFSEdim (AP) CD4+ T cells (n = 5 RE

MKI67 served as control transcript for proliferation. The differential expression sh

<0.01) in AP CD4+ T cells and is expressed by the z-score based on the reads

(Fisher test).

(F) Distribution of classical Th1 (CXCR3+CCR6–), non-classical Th1 (CXCR3+CCR

exemplarily shown for AP, MLR, and PHA in one donor and as mean for AP in H

See also Figure S2 and Table S1.
score that IFN-g-secreting Th1-like cells are the most prominent

T cell subset in this setting.

B-T Cell Interaction via HLA-DR Promotes AP
Regarding the APCs that induce/support AP, B cells appeared

to be particularly interesting candidates, since they upregulate

HLA-DR expression (Mohme et al., 2013) and are present in sub-

stantial numbers in the AP compartment (Figures 1B and S3A)

and due to their emerging role in MS (Krumbholz et al., 2012).

Indeed, we noticed a significant correlation of B and T cell AP,

whereas other conventional stimuli shifted to B or T cell prolifer-

ation, respectively (Figures 3A, 3B, and S3A). AP of both B and

T cells was higher in REM and HLA-DR15+ individuals (Figures

3A and 3C). The reduced T cell AP and IFN-g secretion after

B cell depletion and physical separation of B from T cells hint

at a central role of B cells in triggering and/or sustaining T cell

AP via direct cell-cell interaction (Figure 3D). We then addressed

whether B cells activate and maintain AP CD4+ T cells more effi-

ciently in REM compared to HDs. Autologous co-cultures of

EBV-transformed B cells with expanded AP T cells of HLA-

DR15+ HDs and REM showed that AP CD4+ T cells are main-

tained and activated much more efficiently in the absence of

an exogenous stimulus in REM than in HDs (Figures S3B–S3D).

Given the strong correlation of AP B and T cells, we examined

the relationship between AP B and T cells further. AP B cells

predominantly show a memory phenotype and increased

expression of HLA-DR; i.e., they are in an activated status,

when compared to CFSEhi B cells (Figures 3E and 3F). Transfer

of autologous AP (CFSEdim) memory B cells led to strong activa-

tion and AP of CD4+ T cells in a HLA-DR-dependent manner (Fig-

ure 3G). Based on these observations, we searched for factors

that drive AP of memory B cells. Whereas AP of B cells was inde-

pendent of bystander activation via CD40 (Figure 3H), it was

almost abrogated by ibrutinib, a selective BTK inhibitor (Fig-

ure 3I). Addition of ibrutinib did not alter the survival of B cells

but caused a decrease in HLA-DR expression on B cells accom-

panied by a drop of T cell AP (Figure 3I). BTK is important for

B cell receptor signaling, B cell maturation, and proliferation

but also other pathways, such as MHC-class II and Toll-like

receptor (TLR) signaling (Pal Singh et al., 2018). Interestingly,

BTK inhibitors are in development for several autoimmune dis-

eases including MS (Mullard, 2017). The role of BTK activation

in AP is further supported by phosphorylation of BTK (Figure 3J)

suggesting that the activation of memory B cells involves BTK

signaling and drives AP of CD4+ T cells via interaction with

HLA-DR.

Memory B Cells Drive AP of T Helper Cells
B cell depletion with anti-CD20 antibodies very effectively re-

duces MS relapses suggesting an important role of B cells
M) for Th1, Th2, and Th17 gene sets, each defined by 17 subset-specific genes.

ows only significantly upregulated genes (log2 >1.0; false discovery rate [FDR]

per kilobase million (RPKM) values. Th gene sets were tested for significance

6+), and Th17 (CXCR3–CCR6+) cells in the CFSEhi and CFSEdim compartment,

Ds (n = 9) and REM (n = 13).
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(Hauser et al., 2008). The clinical effects of anti-CD20 therapies

cannot be explained by reduction of autoantibodies as their

main mechanism of action (Hauser et al., 2008; Krumbholz

et al., 2012). B cell depletion may, however, reduce the produc-

tion of proinflammatory cytokines by B cells, which is increased

in MS (Li et al., 2015), and/or their antigen presenting function

via MHC-class II (Molnarfi et al., 2013). To explore how in vivo

alterations of circulating B cells under MS treatments affect AP,

we analyzed patients treated with rituximab (RTX), which

depletes B cells (Hauser et al., 2008), natalizumab (NAT), which

blocks lymphocyte migration to the brain (Yednock et al., 1992)

and increases circulating memory and marginal zone B cells

(Planas et al., 2012), and fingolimod (FTY), which traps naive

and central memory T cells in lymph nodes (Brinkmann et al.,

2010) and reduces circulating B cells. As expected, circulating

B cells were absent in RTX-treated patients, reduced under

FTY and increased under NAT (Figure 4A). Consistent with our

above in vitro data, RTX strongly reduced AP of T cells and proin-

flammatory cytokine responses, FTY led to aminor reduction and

NAT to a strong increase (Figures 4B and S4A). IFN-g production

also correlated with the frequency of AP T cells (Figure 4C). The

strong reduction of in vitro AP T cells raised the question of

whether B cell depletion would also affect peripheral T cell

numbers in RTX-treated patients in vivo. T cell counts indeed

dropped under RTX (Figure 4D). Further, we found significantly

lower frequencies of activated effector memory CD4+ T cells

ex vivo following RTX treatment (Figures 4E and 4F). Of note,

the addition of autologous CD20+ B cells obtained pre-therapy

to samples collected after RTX treatment restored CD4+ T cell

AP (Figures S4B–S4E). Even though depletion of B cells abro-

gated AP of T cells, PBMCs of RTX-treated patients showed

normal numbers of monocytes and mounted normal responses

to a recall antigen excluding a general unresponsiveness of

T cells (Figures S4F and S4G).

Naive B cell numbers correlated negatively, while memory and

particularly unswitchedmemory B cells correlated positively with

the frequency of AP T cells, suggesting that AP of T cells primarily

depends on memory B cells (Figure 4G). Indeed, transfer of

autologous memory B cells obtained at baseline to samples

collected during RTX treatment increased AP and CD4+ T cell

activation compared to transfer of naive B cells. This increase

was dependent on HLA-DR on memory B cells (Figure 4H). In

line with this and also the magnitude of AP, we observed lower
Figure 3. B-T Cell Interaction Promotes AP in a HLA-DR- and BTK-Dep

(A) Correlation and frequency of AP B and T cells in HDs (n = 32) and RRMS (n =

(B) T/B cell ratio in the proliferating compartment after AP, MLR, or a-IgM stimul

(C) AP B cells in HLA-DR15� (n = 15) and DR15+ (n = 17) REM (mean ± SEM).

(D) AP and IFN-g secretion of T cells without or after depletion of B cells (W) and

IFN-g: n = 5 REM; Kruskal-Wallis test).

(E) Distribution of B cell subsets (Bnaive CD27
–IgD+; BUSM CD27+IgD+; BSM CD27

(F) HLA-DR expression of CFSEhi and AP CFSEdim B cells (mean ± SEM; n = 18

(G) Sorting of CFSEhi and CFSEdim B cells following AP, incubation with control

labeled autologous PBMCs. Proliferation and activation of CD4+ T cells were ass

(H) AP of B and CD4+ T cells in the presence of isotype control or a-CD40-block

(I) AP of B and CD4+ T cells upon addition of the selective BTK inhibitor ibrutinib or

(line) and survival (numbers) of B cells (mean ± SEM; n = 3 REM).

(J) Phosphorylation of BTK in AP B cells. Representative example out of 3 REM

See also Figure S3 and Table S1.
memory B cell frequencies ex vivo in REL in contrast to an

increase following NAT therapy, both in comparison to REM (Fig-

ure 4I). Importantly, memory but not naive B cells promoted

AP and CD4+ T cell activation directly upon co-culturing B and

T cells alone (Figure 4J).

AP T Cells Are Enriched for Brain-Homing Cells
The increase of AP with NAT therapy may not only be due to the

increase in peripheral memory B cells but also because NAT traps

brain-homing cells in the peripheral blood. This conclusion is sup-

ported by the reduced AP during clinical MS relapses, i.e., when

pathogenic cells presumably have migrated to the brain, and

may explain why MS patients often show strong rebound of dis-

ease activity when NAT treatment is stopped (Sorensen et al.,

2014). To examine this issue, we compared the TCR beta chain

variable gene (TCRVb) sequences in peripheral AP T cells and in

brain lesion-infiltrating T cells of twoMSpatients (Figure 5A; Table

S4; Table S5), from whom brain lesions (autopsy) or brain-

infiltrating cells (biopsy) were available (Planas et al., 2015,

2018). In two independent experiments in patient 1, we identified

a substantial overlap (17.4%– 29.9%) of identical productive

TCRVb rearrangements between AP (CFSEdim) and brain lesions

compared with a low overlap (2.6%–4.8%) between non-prolifer-

ating T cells (CFSEhi) and brain lesions (Figures 5B and S5A–S5C).

In patient 2, we also found greater overlap between AP T cells and

brain-infiltrating cells (7.2%) compared to non-proliferating T cells

(1.4%) albeit at a lower percentage (Figure 5C). Among the shared

TCRVb sequences, we identified approximately two-thirds of the

sequences from the AP compartment also in resting CFSEhi cells,

yet at much higher frequency in CFSEdim cells (Figure 5B, left

graphs under pie charts). Presumably due to the larger clone-

set size in CFSEhi versus CFSEdim cells, we found more brain-

matching unique TCRVb sequences in the CFSEhi cells, however,

overall at lower frequencies than the shared unique TCRVb

sequences in the AP compartment (Figure 5B, right graphs under

pie charts). Interestingly, TCR clonotypes, which we identified in

peripheral AP T cells, were among the most clonally expanded

in the brain (Figures S5D and S5E; Table S5).

Since the clone-set sizes of the different cell compartments

differed, and the number of shared TCRVb sequences is influ-

enced by this factor (Zvyagin et al., 2014) (Figure S6A), we cor-

rected the numbers of shared brain-matching unique productive

TCRVb sequences in AP and non-proliferating cells for their
endent Manner

18 REL; n = 32 REM; Spearman’s rank correlation test).

ation (HDs, n = 14; REM, n = 14; whiskers: min-max).

after separation of B cells into transwells (T) (mean ± SEM; CFSE: n = 6 REM;

+IgD–; BDN CD27–IgD–) in CFSEhi and AP CFSEdim (mean; n = 8 REM).

REM; Mann-Whitney U test).

or HLA-DR-blocking antibodies and transfer into B cell-depleted and CFSE-

essed after 7 days of stimulus-free co-culture (mean ± SEM; n = 3 REM).

ing antibody. Representative example out of 3 REM is shown.

vehicle (DMSO) control (left graph). Right graph shows the HLA-DR expression

is shown.
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clone-set sizes, i.e., the numbers of total unique productive

TCRVb sequences. Thereupon, we identified not only a higher

overlap of the AP compartment with all brain lesions, but partic-

ularly with the highly active brain lesion LIII (Figure 5D) (Planas

et al., 2015). In the AP compartment, shared TCR sequences

were found in peripheral memory CD4+ and CD8+ T cells (Fig-

ure S6B; Table S5). Normalization for the number of shared

TCRVb sequences showed that AP memory CD4+ T cell clono-

types are preferentially found in the highly active lesion (Figures

5E and S6B). In contrast and in line with another study (Planas

et al., 2018), brain-matching AP memory CD8+ T cell clonotypes

are among those that are more globally expanded in the

non-proliferating compartment as well as in all three lesions,

indicating that brain-infiltrating memory CD8+ T cells may be

recruited by bystander mechanisms.

AP TCCs Recognize Antigens Expressed in MS Brain
Tissue and B Cells
An important question is whether AP involves recognition of spe-

cific antigens and whether these are presented by B cells. To

examine this issue, we generated T cell clones (TCCs) from the

AP cells of MS patient 1 (homozygous for HLA-DR15) and

show that brain-homing T cells can in principle be obtained effi-

ciently fromPBMCs. 6 out of 12 generated CD4+ TCCswere also

present in the highly active brain lesion LIII (Figure 6A). These

AP TCCs showed polyfunctional responses with prominent

non-classical Th1 or Th2 phenotypes due to high secretion of

IFN-g, GM-CSF, IL-5, and IL-13, respectively, as well as expres-

sion of CXCR3 and/or CCR6 (Figures 6A and S6C). The strong

secretion of Th2 cytokines is consistent with the predominant

Th2 phenotype of brain-infiltrating T cells in this patient (Planas

et al., 2015).

We next employed an unbiased approach to identify the target

antigen/s of the above TCCs using positional scanning combina-

torial peptide libraries and biometrical analysis (Zhao et al.,

2001). TCC14 expanded sufficiently to be tested with the full

set of 200 positional scanning library mixtures. After determining

its HLA-class II restriction (DRB1*15:01), reactivity against all 200

mixtures was tested and showed positive responses against

single or multiple amino acids in each of the 10 positions (Fig-

ure 6BI). Using scoring matrices to summarize the reactivity of
Figure 4. In Vivo B Cell Depletion Reduces Memory B Cell-Induced Ac

(A and B) Frequency of B cells (A) and AP T cells (B) in REM (nihil; black; n = 32) an

n = 15), or fingolimod (FTY; orange; n = 10) treatment (mean ± SEM; Kruskal-Wa

(C) Correlation between IFN-g secretion and AP T cells (Spearman’s rank correla

(D) Ex vivo T cell counts in fresh blood of MS patients before (baseline) and afte

rank test).

(E and F) Ex vivo frequency of naive/memory (E) and activated (F, left) CD4+ T cel

Right panel (F) shows the distribution of naive/memory subsets in activated CD4+

signed-rank and Kruskal-Wallis test).

(G) Correlation between AP T cells and ex vivo peripheral B cell subsets in REM

(H) AP and activation of CD4+ T cells upon transfer of CD27– naive and CD27+ m

from time point of RTX therapy. B cells were incubated with isotype control or

matched-pairs signed-rank test for naive versus memory and mIgG2a versus a-

(I) Distribution of ex vivo peripheral B cell subsets in REM (n = 27), REL (n = 10),

(J) Sorted naive and memory B cells were co-cultured with autologous CFSE-la

(mean ± SEM; n = 4 REM; Kruskal-Wallis test).

See also Figure S4 and Table S1.
TCC14 against the decapeptide library after testing multiple

doses, we predicted peptides to be recognized by TCC14 using

a transcriptome database from the brain lesions of MS patient 1

(Figure 6BII) (Zhao et al., 2001). 92 sequences were synthesized

and tested for recognition by TCC14 based upon their appear-

ance in the top 50 predicted peptides for at least one of the

matrices used (Figure 6BIII). As we showed previously, there

is a good relationship between predicted high ranking and

T cell response (Sospedra et al., 2010; Zhao et al., 2001) since

TCC14 recognized many of the high scoring peptides. Subse-

quent dose titration experiments with the 33 peptides that gave

positive responses, among them peptides from members of

the RAS guanyl releasing protein (RASGRP1–4) family, showed

that a peptide from RASGRP2 was recognized with high antigen

avidity (EC50 = 0.012 mM) (Figure 6C). Recognition of the

RASGRP2 peptide by TCC14 resulted in secretion of Th2

cytokines and also of IFN-g (Figure 6D). RASGRP1–3 are

of particular interest, since they are expressed both in the brain

lesion of patient 1, but also in the transcriptome of AP memory

B cells (Figure 6E). However, proteomic analysis demonstrated

high abundance of only RASGRP2 and not of the other RASGRPs

in B cells and brain of MS patients (Figure 6F; Table S6).
RASGRP2 Is Expressed in B Cells and Cortical Gray
Matter and Recognized by Memory T Cells
RASGRP2 expression in striatal neurons has been reported (Toki

et al., 2001), and here we demonstrate its wide expression in

human cortical gray matter and specifically also in neurons (Fig-

ure 7A). The latter region is of interest in MS since cortical lesions

and neurodegeneration have been related to ectopic lymphoid

follicles in the meninges (Magliozzi et al., 2007).

To assess the immunogenicity of RASGRP2 in MS patients,

we tested T cell reactivity to overlapping peptides covering

RASGRP2 (Table S7) by fluorospot in PBMCs of HDs, untreated

REM, and NAT-treated MS patients (Figures S7A and S7B). We

observed a stepwise increase in T cells producing IFN-g and

IL-17 with highest numbers in NAT-treated MS patients. Re-

sponses were directed against multiple epitopes of RASGRP2.

Of particular interest is the high frequency in NAT-treatedMSpa-

tients indicating that pathogenic cells are trapped in the
tivation of T Helper Cells

d RRMS patients under rituximab (RTX; green; n = 14), natalizumab (NAT; blue;

llis test).

tion test).

r RTX therapy (n = 179; whiskers: min-max; Wilcoxon matched-pairs signed-

ls in fresh blood of RRMS patients before (REM, nihil) and after RTX treatment.

T cells before RTX (E and F: n = 9; whiskers: min-max; Wilcoxon matched-pairs

(n = 27; Spearman’s rank correlation test).

emory B cells of MS patients before RTX to CFSE-labeled autologous PBMCs

HLA-DR-blocking antibodies before transfer (mean ± SEM; n = 7; Wilcoxon

HLA-DR).

and NAT (n = 10).

beled CD4+ T cells to assess AP and activation of CD4+ T cells after 7 days
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Figure 5. Peripheral Blood-Derived TCCs Undergoing AP Are Frequently Found in MS Brain Lesions

(A) TCRVb repertoire of the AP compartment and TCCs generated thereof were compared with the corresponding brain infiltrate of two MS patients.

(B and C) Frequency overlap of unique productive TCRVb sequences in peripheral CFSEhi (red) and CFSEdim (AP, purple) with TCRVb sequences in the MS brain

lesions (B; MS patient 1, experiment B) or the brain infiltrate (C; MS patient 2) represented by pie charts. Box-and-whisker plots indicate the distribution and

frequency of all TCRVb sequences from the respective peripheral cell compartments. Shared TCRVb sequences in the brain infiltrate that were found also in both

(left graph) or uniquely (right graph) in one of the two CFSE compartments are depicted by dots. The number (n) of total unique (gray) and the number as well as

frequency overlap of shared TCRVb sequences of the CFSEhi (red) and CFSEdim (purple) compartment are shown.

(D and E) Overlap of TCRVb sequences upon normalization of the shared and total clone-set sizes that were compared with each other. The calculated value is

given as arbitrary unit (AU) andwas performed based on the TCRVb sequences in the clone sets of MS patient 1 and 2 (D), and on the TCRVb sequences that were

matching with either peripheral blood memory (CD45RO+) CD4+ (red) or CD8+ (blue) T cells of MS patient 1 (E).

See also Figures S5 and S6 and Tables S4 and S5.
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Figure 6. AP TCCs Home to the Brain and Recognize Self-Antigens that Are Expressed in Brain Lesions and B Cells

(A) Brain-homing TCCs isolated from the AP compartment of PBMCs with their corresponding TCRVb sequence, frequency in the brain lesions, and functional

phenotype.

(B) Screening procedure for peptide ligand identification of the AP brain-homing TCC14 (MS patient 1, HLA-DR15+/+) using a positional scanning library. (I) The

restriction of the TCC was tested with BLS cells expressing HLA-DR15 alleles (DR2a or DR2b) or DQw6. Subsequently, TCC14 was tested with all combinatorial

peptide mixtures using BLS-DR2b cells. Proliferative responses (mean ± SEM; stimulatory index = SI; dotted line SI = 2) were assessed by thymidine incor-

poration. Mean responses from three experiments were used to generate a matrix for optimal amino acid combinations of a potential peptide ligand. (II) The

potential best cognate antigens were then predicted using a transcriptome database from the brain lesions of MS patient 1. (III) The top 92 predicted peptides

were tested for reactivity and are shown with one of their corresponding matrix scores.

(C) The stimulatory peptides were tested in decreasing concentrations for the proliferative response of TCC14 (mean ± SEM). Peptides from RASGRP family

members are highlighted.

(D) Cytokine response of TCC14 upon stimulation with decreasing concentrations of the RASGRP2 peptide.

(legend continued on next page)
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periphery. Consistent with this, RASGRP2 responders almost all

showed high AP (Figure S7C).

We next examined whether RASGRP2 reactivity is mediated

by memory T cells and whether elimination of B cells would

help to distinguish AP from reactivity to the RASGRP2 pep-

tides/protein. Depletion of CD45RA-positive cells, which include

naive T cells and also B cells, enriched not only for memory

T cells but most importantly also depleted the entire B cell line-

age (Figure 7B). The elimination of B cells reduced the ‘‘back-

ground proliferation,’’ i.e. AP, over 7 days (Figure 7C). Using

this methodology, we identified reactivity in TCC14 and all tested

CD45RA-depleted PBMCs of NAT-treated MS patients to

various RASGRP2 peptide pools, but importantly also to the

whole RASGRP2 protein (Figure 7D). The latter demonstrates

that memory T cells in MS are recognizing also naturally pro-

cessed and presented RASGRP2 epitopes.

DISCUSSION

Our data indicate that the interaction of B and T cells leads to

activation and growth, i.e., AP, which appears to play an impor-

tant role in the autoimmune response in MS. The study extends

our previous findings that myelin-specific T cells can be acti-

vated, show TCR signaling, and proliferate upon contact with

fully activated dendritic cells and in the absence of exogenously

added antigen (Kondo et al., 2001).

The simple CFSE-based in vitro system demonstrates

increased AP in PBMCs in the clinically inactive state of the dis-

ease that is driven by memory B cells and is enriched for likely

pathogenic, brain-homing effector memory T cells, i.e., cells

that can invade an immunoprivileged organ. Clinical observa-

tions from anti-CD20 and anti-VLA-4 treatment support the

interaction between B and T cells. B cells may thus participate

not only in maintaining, but also in creating a pathogenic T cell

repertoire in the periphery during REM. Recent data have

shown that B cells are involved in thymic selection (Yamano

et al., 2015), and it is conceivable that they shape a T cell reper-

toire with the propensity to (cross-) react with CNS autoanti-

gens already at this stage. Restimulation and pathogenic differ-

entiation of these T cells may again involve B cells in peripheral

secondary lymphoid organs, although the site, where this takes

place, is not clear. The demonstration of tertiary lymphoid

structures in the meninges of MS patients (Magliozzi et al.,

2007), which are rich in B and T cells and close to cortical le-

sions, indicates that B-T interactions may also be involved in

sustaining inflammation in the CNS. B cell receptor sequencing

of antigen-experienced B cells suggests that CNS-homing

B cells differentiate in cervical lymph nodes before entering

the CNS (Stern et al., 2014), and Ig class-switched memory

B cells exchange between periphery and brain (Palanichamy

et al., 2014).
(E) Expression level (RPKM) of stimulatory peptide-originating transcripts (e.g. RA

MS patient 1 and AP B cells (n = 6 REM). Expression levels under 0.1 or absent

(F) Proteome analysis of peripheral blood B cells (n = 4 REM) and brain tissue (gray

(numbers) of RASGRP1-4 are depicted as measure for protein abundance.

See also Figure S6 and Table S6.
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Important questions arising from these observations are:

Which is the nature of the self-peptides that activate and/or

expand autoreactive CD4+ T cells, and whether the ones leading

to activation in the peripheral immune system are identical to

those recognized in the brain? Data from many laboratories

including ours have shown that peptides from the myelin pro-

teins proteolipid protein (PLP), myelin basic protein (MBP), and

myelin oligodendrocyte glycoprotein (MOG) are target antigens

in EAE and may also play a role in MS (Goverman, 2009; Sospe-

dra and Martin, 2005). MOG and full-length PLP are not

expressed in immune cells or the thymus, while MBP is, and

hence in the case of MOG- and PLP-reactive T cells a mecha-

nism like molecular mimicry and activation by another antigen,

e.g., from a pathogen, has been invoked (Wucherpfennig and

Strominger, 1995). Furthermore, a few non-myelin proteins

including alpha-B crystallin and transaldolase-H, which are

expressed in both lymphoid and CNS cells, may be recognized

by T cells of MS patients, indicating that target antigens do not

have to be myelin proteins (Sospedra and Martin, 2005). In our

current study, we demonstrate not only that HLA-DR onmemory

B cells and B cell receptor (BCR) signaling are involved in AP, but

further that these cells can express molecules like RASGRPs,

which are involved in reduced apoptosis and tumorigenesis of

EBV-infected B cells and B and T cell signaling and are crucial

for maintaining B-T cell homeostasis (Stone, 2011). Of note,

RASGRPs and particularly RASGRP2 are expressed in the brain

as well. The unbiased identification of RASGRP2 as a high-

avidity target antigen for CD4+ TCC14, which we isolated from

peripheral AP T cells and which is clonally expanded in an active

brain MS lesion, lends support for a scenario, in which activation

of peripheral B cells with upregulation of HLA-DR and expression

of antigens like RASGRP2 can then activate and propagate

autoreactive CD4+ T cells, which migrate to and induce inflam-

mation in the brain. In this case, the inducing antigen and the

target antigen are identical. Important questions concerning

how the cortical/neuronal expression pattern of RASGRP2

relates to inflammation in the meninges, perivascular spaces,

or brain parenchyma, and how the released protein may be

distributed via the CSF, remain to be addressed.

In summary, our data link B and T cells with MS pathogenesis

and show that the interactions of these two cell types probably

occur in conjunction with the MS-associated DR15 molecules

and that B cells may express antigens, which are also upregu-

lated in the brain and recognized by AP CD4+ T cells. We expect

that our data will be instrumental for further studies about MS

pathomechanisms, as in vitro drug finding platform and to guide

the search for the specificity of B and T cells. Furthermore, they

provide a plausible explanation for the high efficacy of anti-CD20

therapy in a T cell-mediated disease such as MS. Future studies

should address whether AP is influenced by antigen-specific

tolerization (Lutterotti et al., 2013).
SGRP1-4) and control transcripts (MOBP, CD19) in the active brain lesion III of

were set as 0.1.

matter, pooled, n = 6MS). The protein coverage (columns) and spectral counts



(legend on next page)
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AIM-V medium Thermo Fisher Scientific Cat# 12055-091

Fetal calf serum (FCS) Eurobio Cat# CVFSVF0001

Filtermat A, GF/C Perkin-Elmer Cat# 1450-421

Goat anti-IgM antibody Jackson ImmunoResearch Cat# 109-006-129; RRID: AB_2337553

Human serum PAA Cat# C15-021

IgG from human serum Sigma-Aldrich Cat# I2511; RRID: AB_1163604

IMDM medium GE healthcare Cat# SH30259.01

Mouse anti-BTK (pY551) (clone 24a/BTK (Y551)) ; (FACS, in vitro) BD Biosciences Cat# 558129; RRID: AB_397046

Mouse anti-CD3 (clone HIT3a); (FACS, in vitro) Biolegend Cat# 300328; RRID: AB_1575008

Mouse anti-CD3 (clone UCHT1); (FACS, in vitro) Biolegend Cat# 300423; RRID: AB_493740

Mouse anti-CD3 (clone UCHT1); (FACS, ex vivo) BD Biosciences Cat# 560365; RRID: AB_1645570

Mouse anti-CD3 (OKT3) Ortho Biotech upon request

Mouse anti-CD4 (clone OKT4); (FACS, in vitro) Biolegend Cat# 317418; RRID: AB_571947

Mouse anti-CD4 (clone RPA-T4); (blocking, in vitro) Biolegend Cat# 300502; RRID: AB_314070

Mouse anti-CD4 (clone RPA-T4); (FACS, ex vivo) BD Biosciences Cat# 560650; RRID: AB_1727476

Mouse anti-CD8 (clone DK25); (FACS, in vitro) Dako Cat# PB98401; RRID: AB_579530

Mouse anti-CD8 (clone SK1); (FACS, ex vivo) BD Biosciences Cat# 641400; RRID: AB_1645736

Mouse anti-CD14 (clone HCD14); (blocking, in vitro) Biolegend Cat# 325618; RRID: AB_830691

Mouse anti-CD16 (clone B73.1); (FACS, ex vivo) BD Biosciences Cat# 347617; RRID: AB_400331

Mouse anti-CD19 (clone HIB19); (FACS, ex vivo) Biolegend Cat# 302230; RRID: AB_2073119

Mouse anti-CD19 (clone HIB19); (FACS, in vitro) Biolegend Cat# 302226; RRID: AB_493751

Mouse anti-CD19 (clone HIB19); (FACS, in vitro; ex vivo) Biolegend Cat# 302212; RRID: AB_314242

Mouse anti-CD27 (clone M-T271); (FACS, in vitro; ex vivo) Biolegend Cat# 356406; RRID: AB_2561825

Mouse anti-CD38 (clone HIT2); (FACS, ex vivo) BD Biosciences Cat# 555462; RRID: AB_398599

Mouse anti-CD40 (clone MAB6322); (blocking, in vitro) R&D Cat# MAB6322; RRID: AB_2075698

Mouse anti-CD45 (clone HI30); (FACS, ex vivo) BD Biosciences Cat# 560566; RRID: AB_1645452

Mouse anti-CD45RA (clone HI100); (FACS, ex vivo) BD Biosciences Cat# 560675; RRID: AB_1727498

Mouse anti-CD45RA (clone HI100); (FACS, in vitro) Biolegend Cat# 304112; RRID: AB_314416

Mouse anti-CD138 (clone MI15); (FACS, ex vivo) Biolegend Cat# 356508; RRID: AB_2561882

Mouse anti-CD183 (CXCR3) (clone 1C6/CXCR3); (FACS, ex vivo) BD Biosciences Cat# 562451; RRID: AB_11153118

Mouse anti-CD183 (CXCR3) (clone G025H7); (FACS, in vitro) Biolegend Cat# 353706; RRID: AB_10962912

Mouse anti-CD196 (CCR6) (clone G034E3); (FACS, ex vivo) Biolegend Cat# 353412; RRID: AB_10916387

Mouse anti-CD196 (CCR6) (clone G034E3); (FACS, in vitro) Biolegend Cat# 353416; RRID: AB_10915987

Mouse anti-CD197 (CCR7) (clone 150503); (FACS, ex vivo) BD Biosciences Cat# 560765; RRID: AB_2033949

Mouse anti-CD197 (CCR7) (clone G043H7); (FACS, in vitro) Biolegend Cat# 353226; RRID: AB_11126145

Mouse anti-CD247 (CD3zeta) (pY142) (clone K25-407.69);

(FACS, in vitro)

BD Biosciences Cat# 558489; RRID: AB_647152

Mouse anti-GM-CSF (clone MAB215); (blocking, in vitro) R&D Cat# MAB215; RRID: AB_2229972

Mouse monoclonal IgM antibodies against HLA class II

molecule DR2a; (FACS)

purchased under an

agreement from One

Lambda (Thermo

Fisher Scientific)

purchased under an agreement

from One Lambda (Thermo

Fisher Scientific)

Mouse monoclonal IgM antibodies against HLA class II

molecule DR2b; (FACS)

purchased under an

agreement from One

Lambda (Thermo

Fisher Scientific)

purchased under an agreement

from One Lambda (Thermo

Fisher Scientific)
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Mouse anti-HLA-DQ (clone HLADQ1); (FACS) Biolegend Cat# 318105; RRID: AB_604127

Mouse anti-HLA-DR (clone L243); (blocking, in vitro) provided by

HG. Rammensee,

University of

Tübingen, Germany

provided by HG. Rammensee,

University of Tübingen, Germany

Mouse anti-HLA-DR (clone L243); (FACS, ex vivo) BD Biosciences Cat# 561224; RRID: AB_10563765

Mouse anti-HLA-DR (clone L243); (FACS, in vitro) Biolegend Cat# 307606; RRID: AB_314684

Mouse anti-HLA-DR (clone L243); (FACS, in vitro) Biolegend Cat# 307616; RRID: AB_493588

Mouse anti-IFN-g (clone B27); (FACS, in vitro) BD Biosciences Cat# 557643; RRID: AB_396760

Mouse anti-IFN-g (clone MAB285); (blocking, in vitro) R&D Cat# MAB285; RRID: AB_2123306

Mouse anti-IgD (clone IA6-2); (FACS, in vitro; ex vivo) Biolegend Cat# 348222; RRID: AB_2561595

Mouse anti-Stat1 (pY701) (clone 4a); (FACS, in vitro) BD Biosciences Cat# 612564; RRID: AB_399855

Mouse anti-TCR Vbeta2 (clone MPB2D5); (FACS) Beckman Coulter Cat# IM2213; RRID: AB_131311

Mouse anti-TCR Vbeta3 (clone CH92); (FACS) Beckman Coulter Cat# IM2372; RRID: AB_131046

Mouse anti-TCR Vbeta4 (clone WJF24); (FACS) Beckman Coulter Cat# IM3602; RRID: AB_131344

Mouse anti-TCR Vbeta7 (clone ZOE); (FACS) Beckman Coulter Cat# IM2287; RRID: AB_131323

Mouse anti-ZAP70 (pY319) (clone 17A/P-ZAP70);

(FACS, in vitro)

BD Biosciences Cat# 561458; RRID: AB_10696417

Mouse isotype control (clone MOPC-21; IgG1, k);

(blocking, in vitro)

Biolegend Cat# 400123

Mouse isotype control (clone MOPC-173; IgG2a, k);

(blocking, in vitro)

Biolegend Cat# 400223

Mouse isotype control (clone MPC-11; IgG2b, k);

(blocking, in vitro)

Biolegend Cat# 400323

Multicolor panel mouse anti-CD45-FITC/CD56-PE/CD19-ECD/

CD3-PC5 (clones B3821F4A/ N901(NKH-1)/ J4.119/ UCHT1)

Beckman Coulter Cat# 6607073; RRID: AB_1575973

Rabbit polyclonal anti-RASGRP2; (IHC) Abcam Cat# ab170572

Rat anti-GM-CSF (clone BVD2-21C11); (FACS, in vitro) BD Biosciences Cat# 554507; RRID: AB_395440

RPMI-1640 medium Sigma-Aldrich Cat# R0883

X-Vivo medium Lonza Cat# BE04-418F

Bacterial and Virus Strains

EBV strain B95-8 (supernatant produced with marmoset

B cell line B95-8)

ATCC Cat# CRL1612; RRID: CVCL_1953

Biological Samples

Brain tissue (MS patient 1 and 2) This paper and

Planas et al., 2015

Neuroimmunology and Clinical MS

Research, University Medical Centre

Eppendorf, Hamburg, Germany

Brain tissue This paper UK Multiple Sclerosis Society

Tissue Bank, London, UK

Brain tissue This paper Institute of Neuropathology,

University Hospital Zurich,

Switzerland

Peripheral blood This paper Neuroimmunology and MS Research,

Neurology Clinic, University Hospital,

Zurich, Switzerland

Peripheral blood This paper Neuroimmunology and Clinical MS

Research, University Medical Centre

Eppendorf, Hamburg, Germany

Peripheral blood This paper Department of Neurology,

Karolinska University Hospital,

Stockholm, Sweden
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REAGENT or RESOURCE SOURCE IDENTIFIER

Peripheral blood This paper Department of Gastroenterology

and Hepatology, University

Hospital Zurich, Switzerland

Peripheral blood This paper Department of Dermatology and

Department of Immunology,

University Hospital Zurich, Switzerland

Chemicals, Peptides, and Recombinant Proteins

7-AAD Biolegend Cat# 420404

Bovine serum albumin (BSA) Roth Cat# 3854.3

Carboxyfluorescein diacetate N-succinimidyl ester (CFSE) Sigma-Aldrich Cat# 21888

Dimethyl sulfoxide (DMSO) Applichem Cat# A3672

DNase I, recombinant Roche Cat# 04536282001

Eosin G Merck Cat# 115935

Ficoll Eurobio Cat# GAUFIC0065

G418 sulfate (geneticin) Thermo Fisher Scientific Cat# 10131035

Gentamicin Sigma-Aldrich Cat# G1397

Hematoxylin Roth Cat# T865.2

Ibrutinib (PCI-32765; BTK inhibitor) Selleckchem Cat# S2680

IL-2 containing supernatant (produced with IL-2T6 cell line) provided by F. Sallusto,

IRB, Bellinzona, Switzerland

provided by F. Sallusto, IRB,

Bellinzona, Switzerland

IOTest� 3 Lysing Solution Beckman Coulter Cat# IM3514

L-aa decapeptide positional scanning library (N-acetylated

and C-amidated TPI 2040)

Pinilla et al., 1994 N/A

L-glutamine Thermo Fisher Scientific Cat# 25030-081

LIVE/DEAD Fixable Aqua Dead Cell Stain Kit Thermo Fisher Scientific Cat# L34957

Methyl-3H-thymidine Hartmann Analytic Cat# M1762

Penicillin/Streptomycin Corning Cat# 30-002-Cl

Peptides, 15-mer, overlapping, human RASGRP2 Peptides&Elephants This paper, see also Table S7

Peptides, 10-mer Peptides&Elephants This paper

Phytohemagglutinin-L (PHA-L) Sigma-Aldrich Cat# L2769

PP1 (LCK inhibitor) Selleckchem Cat# S7060

Proteinase K, recombinant Roche Cat# 03115879001

QIAzol lysis reagent QIAGEN Cat# 79306

RASGRP2 protein, human recombinant OriGene Cat# TP312719

Saponin Applichem Cat# A4518

Tetanus toxoid (TTx) Novartis Behring upon request

Triton X-100 Sigma-Aldrich Cat# T8787

Critical Commercial Assays

CD4 T Cell Isolation Kit, human (untouched) Miltenyi Biotec Cat# 130-096-533

CD19 MicroBeads, human Miltenyi Biotec Cat# 130-050-301

CD20 MicroBeads, human Miltenyi Biotec Cat# 130-091-104

CD45RA MicroBeads, human Miltenyi Biotec Cat# 130-045-901

Cytofix/Cytoperm BD Biosciences Cat# 554714

Flow-Count Fluorospheres Beckman Coulter Cat# 7547053

GM-CSF ELISA Set BD Biosciences Cat# 555126

GolgiStop protein transport inhibitor BD Biosciences Cat# 554724

Human IFN-g/IL-22/IL-17A FluoroSpot kit, pre-coated Mabtech Cat# FSP-011803-10

IFN-g ELISA MAX Deluxe Biolegend Cat# 430105

(Continued on next page)

Cell 175, 1–16.e1–e10, September 20, 2018 e3

Please cite this article in press as: Jelcic et al., Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis, Cell
(2018), https://doi.org/10.1016/j.cell.2018.08.011



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ImmunoSEQ Platform Adaptive Biotechnologies https://marketing.adaptivebiotech.

com/immunoseq

iVIEW DAB Detection Kit Ventana Cat# 760-091

LEGENDplex Th Cytokine Panel Biolegend Cat# 740001

PicoPure RNA Isolation Kit Thermo Fisher Scientific Cat# KIT0204

SMARTer stranded total RNA-seq- pico input mammalian kit Clontech Cat# 635007

T Cell Activation/Expansion Kit, human (a-CD2/CD3/CD28

antibody-loaded MACSibead particles)

Miltenyi Biotec Cat# 130-091-441

TruSeq SR Cluster Kit v4-cBot-HS Illumina Cat# GD-401-4001

Deposited Data

RNA sequencing data of brain LIII of MS patients 1 Planas et al., 2015 GEO: GSE60943

RNA sequencing data of CFSEhi/dim CD19+ This paper ENA: PRJEB23143

RNA sequencing data of CFSEhi/dim CD3+CD4+ This paper ENA: PRJEB19652

TCRVb sequencing data This paper https://clients.adaptivebiotech.com/

pub/jelcic-2018-cell

Experimental Models: Cell Lines

Autologous EBV-transformed B cell lines This paper This paper

Bare lymphocyte syndrome (BLS) cells provided by B. Kwok,

Benaroya Research

Institute, Seattle

provided by B. Kwok, Benaroya

Research Institute, Seattle

marmoset B cell line B95-8 ATCC Cat# CRL1612; RRID: CVCL_1953

Experimental Models: Organisms/Strains

not in this study

Oligonucleotides

Primer: TRBC Reverse: gacagcggaagtggttgcgggggt Microsynth N/A

Primer: TRBV20-1 Forward: tcaaccatgcaagcctga Microsynth N/A

Primer: TRBV28 Forward: cgcttctcccggattctggagtcc Microsynth N/A

Primer: TRBV29-1 Forward: gaggccacatatgagagtgg Microsynth N/A

Primer: TRBV4-1 Forward: gcttctcacctgaatgcccc Microsynth N/A

Software and Algorithms

EAGLE2 Loh et al., 2016 https://data.broadinstitute.org/

alkesgroup/Eagle/

FlowJo Tree Star https://www.flowjo.com/ ;

RRID: SCR_008520

GraphPad Prism Graphpad https://www.graphpad.com/ ;

RRID: SCR_002798

ImmunoSEQ analyzer 2.0 Adaptive biotechnologies https://marketing.adaptivebiotech.

com/immunoseq/analyzer

Ingenuity Pathway Analysis QIAGEN https://www.ingenuity.com/ ;

RRID: SCR_008653

MASCOT Matrixscience http://www.matrixscience.com/

PBWT Durbin, 2014 https://github.com/richarddurbin/pbwt

PRSice v1.25 Euesden et al., 2015 http://prsice.info/

R/bioconductor package edgeR Robinson et al., 2010 http://bioconductor.org/packages/

release/bioc/html/edgeR.html

RSEM algorithm (version 1.2.22) Li & Dewey, 2011 https://omictools.com/ ;

RRID: SCR_002250

Scaffold software (version 4.8.4) Proteome Software http://www.proteomesoftware.com/

products/scaffold/

SPICE NIH, NIAID https://niaid.github.io/spice/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Roland

Martin (roland.martin@usz.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Peripheral blood was collected from 32 healthy donors (HD; age range 25-49, F:M ratio: 1.7) and 50 untreated (nihil) patients with

relapsing-remitting MS (RRMS), of which 18 patients where in relapse (REL; age range 20-45, F:M ratio: 2.0) and 32 patients were

in remission (REM; age range 22-54, F:M ratio: 1.1), in a first cohort. For a second cohort, we used peripheral blood from 14 HD

(age range 25-41, F:M ratio: 0.8) and 14 untreated RRMS patients (REM; age range 22-54, F:M ratio: 1.8). Furthermore, we received

additional blood samples from untreated patients with psoriasis (n = 10; age range 25-47, F:M ratio: 0.4) andCrohn’s disease (Morbus

Crohn, n = 7; age range 25-53, F:M ratio: 1.3). MS had clinically definite MS by clinical and/or McDonald criteria (Polman et al., 2011).

We were blinded for the status of remission and relapse when performing the CFSE assay for samples of RRMS patients. Relapse

was defined as clinical worsening of at least 24 h duration and/or contrast-enhancing lesion/s on MRI and within no more than one

month of peripheral blood collection. Remission was defined as absence of contrast-enhancing lesion/s on MRI and stable clinical

disease course compared to last visit as well as being at least one month before and/or after relapse. Furthermore, peripheral blood

was collected from 15 patients with RRMS under natalizumab treatment (age range 23-50, F:M ratio: 4.0) and 10 patients under

fingolimod treatment (age range 24-47, F:M ratio: 1.5). The majority of samples were collected at the Neuroimmunology and MS

Research Section, Neurology Clinic, University Hospital Zurich, Zurich (Switzerland), and some at the Institute for Neuroimmunology

and Clinical Multiple Sclerosis Research, Centre for Molecular Neurobiology, University Medical Centre Eppendorf, Hamburg

(Germany). In addition, we collected peripheral blood at theMS clinic of the Department of Neurology, Karolinska University Hospital,

Stockholm, from 9 patients before (baseline) and 3months after rituximab treatment (age range 32-59, F:M ratio: 0.8) and 14 patients

under rituximab treatment (age range 30-59, F:M ratio: 1.3). Furthermore, whole blood was collected and directly analyzed by flow

cytometry in 188 (n = 179 for B and T cell counts, age range 19-65, F:M ratio: 2.0; n = 9 for T cell subsets, age range 33-54, F:M

ratio: 3.5) MS patients before (baseline) and after rituximab treatment. For the RASGRP2 reactivity screening, we collected peripheral

blood from 8 RRMS patients under natalizumab treatment (age range 24-53, F:M ratio: 0.6) at the the Neuroimmunology and MS

Research Section, Neurology Clinic, University Hospital Zurich, Zurich (Switzerland) and from 20 RRMS patients under natalizumab

treatment (age range 21-56, F:M ratio: 0.8) at the MS clinic of the Department of Neurology, Karolinska University Hospital, Stock-

holm. The demographics of all donors included in the study are shown in detail in Table S1. Analysis of the influence of gender identity

on autoproliferation (AP) did not result in any significant difference between females and males, neither in HD nor MS patients (data

not shown).

The samples used for the research activities were taken from various research projects. These have been previously reviewed and

approved by the corresponding Ethics Committees. This includes: a) research projects with EC-No. 2758 approved on 18th October

2007 by the Ethics Committee of the Hamburg Board of Physicians, Germany; b) research projects with EC-No. 2013-0001 approved

on 05th June 2013, EC-No. 2014-0699 approved on 27th February 2015 and EC-No. 1316 (control samples from patients with Crohn’s

disease) approved on 05th February 2007 by the Cantonal Ethics Committee of Zurich, Switzerland; c) the control samples of

psoriasis patients were received from the Biobank of the Department of Dermatology, University Hospital Zurich, Switzerland;

d) research project with EC-No. 2015/1280-32 approved on 21st July 2015 by Ethical Vetting Board of Stockholm, Sweden; e) brain

tissue samples and peripheral blood for TCR sequencing were collected from two patients with MS as described previously (Planas

et al., 2015) and approved as part of the research projects with EC-No. 2758 by the Ethics Committee of the Hamburg

Board of Physicians, Germany (see above); and f) brain tissue samples were provided for immunohistochemistry analyses by the

Institute of Neuropathology, University Hospital Zurich and for proteomic analyses by the UK Multiple Sclerosis Society Tissue

Bank. The use of these samples for research projects was approved respectively by the Regional Ethics Committee for Wales,

UK, on 18th June 2013 (EC-No. 08/MRE09/31+5) and by the Cantonal Ethics Committee of Zurich, Switzerland, on 4th September

2014 (EC-No. 2014-0243). All patients consented for the sampling in the framework of the above-mentioned projects. In addition,

all of these patients have consented for the further use of the samples in research (General Consent).

Primary cells and cell lines
Peripheral blood mononuclear cells (PBMCs) from HD and patients were freshly isolated from EDTA-containing blood tubes, sodium

citrate-containing cell preparation tubes, or from leukaphereses using Ficoll (Eurobio) density gradient centrifugation. All isolated

PBMCs were cryopreserved in freezing media containing 10% dimethyl sulfoxide (DMSO; Applichem) and 90% fetal calf serum

(FCS; Eurobio) and stored at�180�C. PBMCswere obtained under ethical approvals andwith informed consent as described above.

The demographics incl. age and gender of these donors in the respective cohorts are depicted in Table S1.

EBV-transformed B cell lines were generated from above collected PBMCs of few individuals (5 HD, age range 28-49, F:M ratio:

1.5; 5 REM, age range 31-52, F:M ratio: 4.0) under ethical approvals and with informed consent as described above. EBV transfor-

mation was performed by using the supernatant of the EBV-producing marmoset B cell line B95-8 (ATCC, see Key Resources Table)
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and OKT3 antibody (Ortho Biotech). The EBV-transformed B cell lines were maintained in complete RPMI-1640 medium (Sigma-

Aldrich) containing 100 U/mL penicillin/streptomycin (Corning), 50 mg/mL gentamicin (Sigma-Aldrich), 2 mM L-glutamine (Thermo

Fisher Scientific) and 10% FCS. The B95-8 cell line was cultured also in complete RPMI medium containing 100 U/mL penicillin/

streptomycin, 50 mg/mL gentamicin, 2 mM L-glutamine and 10% FCS. Culture supernatants containing EBV particles were collected

after sufficient cell growth over 7 days, centrifugation and filtering for removal of cell debris, and finally frozen at �80�C.
Bare lymphocyte syndrome (BLS) cells stably expressing one of the HLA-DR15 haplotype expressing HLA class II alleles

(DR2a ( = DRB5*0101), DR2b ( = DRB1*1501) or DQw6 ( = DQB1*0602) were kindly provided by B. Kwok (Benaroya Research

Institute, Seattle). HLA class II-expressing BLS cells were cultured in complete RPMI medium containing 100 U/mL penicillin/

streptomycin, 50 mg/mL gentamicin, 2 mM L-glutamine and 10% FCS. In order to maintain selection and stable expression of the

HLA class II molecules, the medium for the BLS cell lines was supplemented with 1 mg/ml G418 sulfate (geneticin; Thermo Fisher

Scientific). HLA class II expression of BLS cell lines was verified with specific antibodies against DR2a, DR2b and DQ (Key Resources

Table) and cells were tested negative for mycoplasma.

METHOD DETAILS

Genotyping and genetic analyses
Individuals were typed for HLA class I and II molecules at Histogenetics LLC, NY, USA. Isolation of DNA fromwhole blood, with a final

concentration of 15 ng/ml, was performed with a standard DNA isolation protocol using a Triton lysis buffer (containing Triton X-100;

Sigma-Aldrich) and Proteinase K treatment. The samples were typed for HLA-class I (A* and B*) and HLA-class II (DRB1*, DRB3*,

DRB4*, DRB5*, DQA1* and DQB1*) using high-resolution HLA sequence-based typing (SBT). Genomic DNA from PBMCs of

28 HD and 29 RRMS (REM) individuals (all of Central European ancestry), for which we assessed in vitro AP, was subjected to gen-

otyping using HumanOmniExpress-24 (v1.1) arrays from Illumina (San Diego, CA, USA). Exclusion criteria weremaximumper-person

missingness (3%), maximum per-SNPmissingness (1%), and deviation fromHardy-Weinberg equilibrium (HWE, p < 1x10�7). Whole-

genome imputation was performed using EAGLE2 (Loh et al., 2016) for phasing and PBWT (Durbin, 2014) with the Haplotype Refer-

ence Consortium (HRC) reference panel (release 1.1) (McCarthy et al., 2016). Only markers with an imputation info score > 0.8 were

included in the final dataset. Linear regression was used to test for association between 134 MS non-HLA risk SNPs (Beecham

et al., 2013; Sawcer et al., 2011), a polygenic MS risk score derived from 102 of those markers (A/T and C/G markers removed

due to strand ambiguity) using PRSice v1.25 (Euesden et al., 2015), or HLA-DR15 status, respectively, and the AP phenotype. Single

SNP associations were subjected to Bonferroni adjustment for multiple testing correction to assess significance.

Proliferation assays
Cryopreserved PBMCs were thawed with complete IMDM medium (GE Healthcare) containing 100 U/mL penicillin/streptomycin

(Corning), 50 mg/mL gentamicin (Sigma-Aldrich), 2 mM L-glutamine (PAA) and 5% heat-decomplemented human serum (HS,

PAA) and afterward washed once with serum-free AIM-V medium (Thermo Fisher Scientific), containing human albumin. Cells

were incubated for 15 min in AIM-V medium containing 50 U/ml DNase (Roche) at 37�C to avoid cell clump formation. Following

two wash steps with PBS containing 0.1% HS, cells were resuspended at a concentration of 103106 cells/ml in PBS/0.1% HS

and were then labeled at a final concentration of 0.5 mM carboxyfluorescein diacetate N-succinimidyl ester (CFSE, Sigma-Aldrich)

for 3 min at room temperature. The labeling was stopped by quenching with 5x excess volume of cold complete RPMI medium

containing 10% HS. After one further wash step with AIM-V, CFSE-labeled cells were seeded at 2 3 105 PBMCs/200 mL per well

in AIM-V (10-12 replicate wells per donor and condition) in 96-well U-bottom microtiter plates (Greiner Bio-One) at 37�C, 5% CO2,

in the absence of exogenous stimuli for 7 days (AP). Short-term exposure to media containing heat-decomplemented human serum

during the protocol did not influence AP (data not shown).

For conventional T cell reactions, we used for the same donors PHA (0.5 mg/ml) as TCR-independent stimulus, tetanus toxoid (TTx,

5 mg/ml, Novartis Behring) as foreign antigen stimulus and mixed lymphocyte reaction (MLR) as allogeneic antigen stimulus. For the

MLR we used allogenic irradiated PBMCs pooled from five HD as stimulator cells and CFSE-labeled PBMCs from HD or MS patients

as responder cells in a ratio of 1:1 (each 23 105 cells). As conventional B cell reaction, we stimulated PBMCs by cross-linking with an

anti-human IgM antibody (10 mg/ml, Jackson ImmunoResearch). We tested for competition of AP by incubating CFSE-labeled

PBMCs in the presence of anti-HLA-DR (kindly provided by HG. Rammensee, University of Tübingen, Germany) anti-CD4,

anti-CD40, anti-IFN-g and anti-GM-CSF antibodies (10 mg/ml, Key Resources Table) or appropriate isotype controls, and to analyze

AP in the presence of serial dilutions of selective LCK (PP1) and BTK (ibrutinib) inhibitors (Key Resources Table).

After 7 days of AP or conventional B- or T cell reactions, CFSE-labeled cells were collected and pooled from replicate wells,

washed with PBS, Fc-blocked with human IgG (Sigma-Aldrich) and labeled with Live/Dead� Aqua (Thermo Fisher Scientific) at

4�C. After washing with cold PBS containing 2mM EDTA and 2% FCS, cells were directly stained for surface markers using the

fluorochrome-conjugated antibodies (Key Resources Table). Measurements were performed on an LSR Fortessa Flow Cytometer

(BD Biosciences), and data were analyzed with FlowJo (Tree Star). For the analysis, gates were set at first on singlets and live cells.

CD4+ and CD8+ T cells were gated prior on CD3+ cells.

Thymidine incorporation assay was used to measure proliferative responses after 2-7 days. At day 2-7, the cells were pulsed with

1 mCi of methyl-3H-thymidine per well (Hartmann Analytic) and harvested after 15 h on amembrane (Filtermat A, GF/C, Perkin-Elmer)
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using a harvester machine (Tomtec). Incorporation was measured by b-scintillation counting (Wallac 1450, Perkin-Elmer). Prolifera-

tive responses were given as counts per min (cpm).

B cell depletion and transfer
Specific depletion of B cells was performed by depleting CD19+ B cells or CD20+ B cells after CFSE labeling of PBMCs using magnetic

microbeads according to the manufacturer’s instructions (Miltenyi Biotec). Co-cultures in transwells (Corning) were used to prevent

cell-cell interactions betweenmagnetically isolatedCD19+ B cells and autologousPBMCs after CFSE labeling. For post-culture transfer

experiments, CFSEhi and CFSEdim B cells were sorted after 7 days of stimulus-free culture using CFSE-labeled PBMCs (150 Mio cells)

fromRRMS (REM) patients, subsequently incubatedwith control isotype or HLA-DR-blocking (L243) antibodies (10 mg/ml) for 30min on

ice and then transferred to CFSE-labeled and CD19-depleted autologous PBMCs. FACS analysis of proliferation and activation was

then assessed after 7 days of stimulus-free co-culture in AIM-V medium. For B cell transfer experiments in longitudinal samples of

rituximab-treated MS patients we isolated either CD20+, CD27- naive or CD27+ memory B cells by separating these B cell subpopula-

tions ex vivo from PBMCs from baseline (pre-therapy) with magnetic microbeads (CD20) or FACS sorting (CD19, CD27), respectively.

IsolatedCD27- naive or CD27+memory B cells were incubatedwith control isotype or HLA-DR-blocking (L243) antibodies (10 mg/ml) for

30min on ice prior to transfer. Following transfer of the B cell subsets to CFSE-labeled autologous PBMCs from time point of rituximab

treatment, cells were seeded in AIM-V for 7 days in the absence of exogenous stimulus (AP) as described above and then analyzed by

flow cytometry. All conditions in depletion and transfer experiments were performed with at least 6-10 replicate wells.

Primary B-T cell co-cultures
Naive and memory B cells were sorted upon labeling with antibodies against CD19 and CD27 via FACS and subsequently put in

AIM-V medium. At the same time autologous PBMCs were labeled with CFSE as described above and used to magnetically isolate

untouched CD4+ T cells according to the manufacturer’s instructions (Miltenyi Biotec). All cell populations were checked for > 90%

(> 95% for sorting) purity in flow cytometry. Isolated CFSE-labeled CD4+ T cells (5x104 cells) were cultured either alone, with sorted

autologous naive ormemory B cells (5x104 cells) per well in a 96-well U-bottommicrotiter plate in AIM-V in the absence of exogenous

stimulus. Following 7 days, cells were analyzed by flow cytometry by staining for live cells, CD4, CD19 and HLA-DR. Each condition

was performed with 5 replicate wells.

Expansion of T and B cells
AP cells (CFSEdim) were sorted after 7 days of PBMCculture (5x107) in the absence of exogenous stimulus from 5HLA-DR15+ HD and 5

HLA-DR15+ RRMS (REM) using a FACSAria (BD). Staining with the viability dye 7-AAD (Biolegend) was used to exclude dead cells. The

sorted cells were then expanded as bulk populations for one round with 1 mg/ml phytohemagglutinin (PHA, Sigma-Aldrich) and human

IL-2 as previously described (Yousef et al., 2012). Autologous EBV-transformed B cell lines were generated from PBMCs of the

HLA-DR15+ individuals using the supernatant of the EBV-producingmarmosetB cell line B95-8 andOKT3antibody asdescribed above.

Cytokine measurement
Supernatants were collected from the wells of cultured CFSE-labeled PBMCs after 7 days. Cytokines were measured with Human

T Helper Cytokine Panel LEGENDplex bead-based immunoassay (Biolegend; incl. measurement of 13 human cytokines: IL-2, IL-4,

IL-5, IL-6, IL-9, IL-10, IL-13, IL-17A, IL-17F, IL-21, IL-22, IFN-g and TNF) using flow cytometry according to the manufacturer’s

instructions. IFN-g ELISA (Biolegend) and GM-CSF ELISA (BD Biosciences) was performed according to the manufacturer’s

instructions. Heatmaps for cytokine responses were generated using Spice software (NIH, NIAID). For visualization purposes in

graphs using a log axis absent values or values below standard range were set as 1.

Ex vivo multicolor staining
B and T cell numbers were analyzed before and after rituximab treatment in 179 MS patients (Table S1). Whole blood was collected,

lysed with IOTest� 3 Lysing Solution (Beckman Coulter) and stained with an antibody mix containing antibodies against CD19 and

CD3 (multicolor panel from Beckman Coulter including antibodies against CD45, CD56, CD19 and CD3 and in addition an antibody

against CD16 from BD). For the quantification of absolute T and B cell numbers Flow-Count Fluorospheres (Beckman Coulter) with a

known concentration were added at an equal volume to the stained sample. Measurements were performed on a Navios (Beckman

Coulter) flow cytometer until March 2016 and on an Aquios (Beckman Coulter) flow cytometer after April 2016. The number of cells

was calculated as follows: absolute count (cells/ml) = (total number of cells counted / total number of fluorospheres counted) x con-

centration of flow-count fluorospheres. T cell subtypes and activated T cells were analyzed in 9 RRMS samples before (untreated)

and after rituximab therapy (Table S1) using a multicolor panel with appropriate antibodies (Key Resources Table). PBMCs from

untreated RRMS (REM) patients used for the in vitro CFSE assay, were stained ex vivo for multiple B cell markers (Key Resources

Table) to distinguish different B cell subsets and to correlate their frequency with the AP of T cells in vitro.

Intracellular cytokine and phosphoprotein staining
Intracellular cytokine staining was performed onCFSE-labeled PBMCs of RRMS (REM) patients after addingGolgiStop protein trans-

port inhibitor (BD Biosciences) at day 7 of stimulus-free culture. After 5 hours in the presence of GolgiStop, CFSE-labeled PBMCs
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were pooled, Fc-blocked with human IgG and labeled with Live/Dead� Aqua at 4�C and subsequently stained for CD3, CD4 and CD8

on ice (Key Resources Table). Following fixation and permeabilization with Cytofix/Cytoperm (BD Biosciences), cells were stained

with cytokine-specific antibodies (Key Resources Table) in PBS containing saponin (Applichem) and bovine serum albumin

(BSA; Roth).

Measurement of phosphorylated signalingmolecules was performed on CFSE-labeled PBMCs of RRMS (REM) patients at day 7 of

stimulus-free culture. After pooling replicate wells, cells were labeled with Live/Dead� Aqua and stained with an antibody against

CD3 or CD19 on ice to prevent activation by the antibody. All centrifugation steps aswell as buffers were pre-chilled at 4�C. Following

wash steps in ice-cold PBS containing 2mM EDTA and 2% FCS, cells were fixed with 2% PFA for 15 min and after centrifugation

permeabilized with 90% ice-cold methanol. Finally, the cells were stained with antibodies against phosphorylated epitopes of

STAT1, CD3z, ZAP-70 or BTK (Key Resources Table) in PBS containing saponin and BSA. Measurements were performed on an

LSR Fortessa Flow Cytometer (BD Biosciences), and data were analyzed with FlowJo (Tree Star).

RNA sequencing
For RNA sequencing analysis of non-proliferating (CFSEhi) and AP (CFSEdim) CD3+CD4+ and CD19+ cells, we labeled 5x107 CFSE-

labeled PBMCs of RRMS (REM) patients at day 7 of unstimulated in vitro culture with Live/Dead� Aqua and antibodies against

CD3, CD4, CD8 and CD19 (Key Resources Table) and subsequently sorted live CFSEhi and CFSEdim cells of CD3+CD4+ and

CD19+ subsets using a FACSAria III (BD Biosciences). Sorted cells were adjusted to the same cell number for CFSEhi and CFSEdim,

washed once in PBS, resuspended in Qiazol (QIAGEN) and after a short incubation at room temperature frozen at �80�C. RNA
isolation was performedwith the PicoPure RNA Isolation kit (Thermo Fisher Scientific) according to themanufacturer’s instructions

after phenol (Qiazol)/chloroform extraction. In brief, Qiazol preserved sorted cells (10.000 – 30.000 cells) were incubated with

chloroform and centrifuged for 15 min at 12,000xg at 4�C. The upper aqueous phase was collected and added to an equal volume

of 70% ethanol. RNA was then isolated using PicoPure RNA Isolation columns and stored at �80�C until RNA sequencing was

performed at the Functional Genomics Center Zurich (FGCZ). RNA integrity and quantity were assessed by capillary electropho-

resis using RNA PicoChip on the Agilent Technologies 2100 Bioanalyzer (Agilent Technologies). SMARTer stranded total RNA-

seq- pico input mammalian kit (Clontech laboratories) was used according to manufacturer’s instructions for library generation

from 500pg of total RNA obtained from CD4+ T cells. Quantification and quality control of generated libraries were performed

on an Agilent Technologies 2100 Bioanalyzer with DNA-specific chip (Agilent Technologies). Uniquely barcoded libraries were

pooled in equal molarities (10nM) and further used for cluster generation according to the manufacturer’s recommendations using

TruSeq SRCluster Kit v4-cBot-HS (Illumina) and sequenced on the Illumina HiSeq 2500 with single read (1x125bp) approach using

the TruSeq SBS Kit v4-HS (Illumina). The raw reads were first cleaned by removing adaptor sequences, trimming low quality ends

(four bases from read start and read end), and filtering reads with low quality (phred quality < 20). Sequence alignment and isoform

expression quantification of the resulting high-quality reads to the human genome assembly (build GRCh38, ensembl

80 annotations) was performed with the RSEM algorithm (version 1.2.22) (Li and Dewey, 2011) with the option for estimation of

the read start position distribution turned on. Genes not present (< 10 counts per gene) in at least 50% of samples from one

condition were discarded from further analyses. Differential gene expression analysis between CFSEdim and CFSEhi cell samples

was performed using the R/bioconductor package edgeR (Robinson et al., 2010) in which the normalization factor was calculated

by trimmed mean of M values (TMM) method. P values were adjusted for multiple testing using the Benjamini-Hochberg proced-

ure. For cluster analysis, a p value < 0.01 was applied. Thresholds log2 fold change > 0.5 and adjusted p values < 0.01 were used

for pathway analysis with Ingenuity (QIAGEN).

TCRVb sequencing
In order to separate CFSEhi and CFSEdim cells for TCRVb sequencing, we labeled 5x107 PBMCs with CFSE as described above,

pooled replicate wells after 7 days of stimulus-free co-culture, stained with the viability dye 7-AAD and subsequently sorted live

(7-AAD-) non-proliferating (CFSEhi) and AP (CFSEdim) subpopulations using a FACSAria III (BD Biosciences). Sorted cells were

washed with PBS and frozen as dry pellets at �80�C. Amplification and sequencing of TCRVb CDR3 were performed on extracted

DNA of brain lesions and sorted peripheral bloodCFSEhi andCFSEdim subpopulations, derived from culture of CFSE-labeled PBMCs,

of twoMS patients aswell as sorted peripheral blood CD4+CD45RO+ andCD8+CD45RO+memory T cells of oneMS patient using the

immunoSEQ Platform (Adaptive Biotechnologies�, Seattle, WA). The immunoSEQ Platform combines multiplex PCR with high

throughput sequencing and a sophisticated bioinformatics pipeline for TCRVb CDR3 analysis (Carlson et al., 2013; Robins et al.,

2009). In the data analysis, we first excluded non-productive TCRVb sequences and CDR3 sequences with less than 4 amino acids,

and then recalculated the frequency of the remaining unique productive TCRVb sequences in each sample. Shared unique

productive TCRVb sequences between different cloneset samples were identified with the immunoSEQ analyzer 2.0 of Adaptive

Biotechnologies� based on identical CDR3 amino acid, V- and J-chain sequence. Normalization of the cloneset sample overlap

was performed with the following equation: amount of shared unique productive TCRVb sequences in cloneset sample 1 (M) with

cloneset sample 2 (N) divided by the amount of total unique productive TCRVb sequences in cloneset size sample 1 (M) multiplied

by the amount of total unique productive TCRVb sequences in cloneset size sample 2 (N). The result was multiplied by 1000 and

depicted as arbitrary unit (AU), based on a previous publication (Zvyagin et al., 2014).
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T cell cloning
In order to generate T cell clones (TCCs) from the AP compartment, we splitted 500CFSEdim cells from the sorted cell pool of CFSEdim

cells (20.000 cells) of MS patient 1 (for the TCRVb sequencing, described above) and performed limiting dilution as previously

described (Yousef et al., 2012). TCCs were enriched using an expansion protocol with PHA and human IL-2 (kindly provided

by F. Sallusto, IRB, Bellinzona, Switzerland) (Yousef et al., 2012). Sequencing of TCR rearrangements of the generated TCCs

was analyzed, as previously described (Yousef et al., 2012). To assess the cytokine response of the TCCs, a-CD2/CD3/CD28

antibody-loaded MACSibead particles (Miltenyi) were used to stimulate each TCC in 7 replicate wells with each 200.000 cells

in X-Vivo medium (Lonza). After 48 h supernatants were collected and cytokine responses measured, as described above. For

chemokine receptor expression, TCCs were stained with Live/dead Aqua and antibodies against CXCR3 and CCR6 after thawing

and resting cells over night.

Positional scanning libraries and Biometrical Analysis
A L-aa decapeptide positional scanning library (N-acetylated and C-amide TPI 2040) was prepared as previously described (Pinilla

et al., 1994). Each of the 200mixtures of the library was tested for their proliferative activity by TCC14 at 40, 120, and 200 mg/ml using

thymidine incorporation assay. The restriction of TCC14 was tested with irradiated BLS cells stably expressing one of the HLA-DR15

haplotype expressing HLA class II alleles (DR2a ( = DRB5*0101), DR2b ( = DRB1*1501) or DQw6 ( = DQB1*0602); kindly provided

by B. Kwok, Benaroya Research Institute, Seattle), since the TCC is derived from a HLA-DR15 homozygous MS patient. After con-

firming restriction of TCC14 for DR2b, all further tests for TCC14 were performed with irradiated BLS-DR2b as APC. The results were

organized into four matrices (data not shown): three matrices each representing the activity at one of the above doses, and a matrix

using the concentration to achieve 3-fold proliferation to combine all three doses into a single activity. Using the biometrical analysis

process (Zhao et al., 2001) against the transcriptome protein database from the brain of MS patient 1, predicted peptide lists were

generated for each of the four matrices. Due to a large amount of agreement between the predicted lists, a total of 92 distinct dec-

amer peptides occurredwithin the top 50 predicted peptides in at least onematrix’s prediction list. These peptides were chosen to be

synthesized (Peptides & Elephants) and tested for proliferative responses after 72 h using thymidine incorporation assay.

Proteomics by LC-MS/MS
In order to obtain peptides for mass spectrometric analysis, dry pellets of magnetically sorted untouched CD19+ B cells (HD and MS

(REM), each n = 4; samples sizes of 2-6x106 cells) were lysed with an adapted filter aided sample preparation (FASP) protocol as

previously described (Wi�sniewski et al., 2009). Fresh frozen brain tissue from cortical gray matter from brains (n = 6 controls, pooled

and n = 6 MS, pooled) was dissociated and lysed using a PCT technology as previously described (Guo et al., 2015). Resulting pep-

tides were dissolved in 3% acetonitrile and 0.1% formic acid before injecting into an Easy-nLC 1000 linked to an Orbitrap Fusion

instrument (Thermo Fisher Scientific) on a gradient of 120 min. As columnmaterial ReproSil-Pur, C18, 120 Å, AQ, 1.9 mm (Dr. Maisch

GmbH) with column dimensions ID 0.075mm/ length 150mm was used. For protein identification, ‘‘raw’’ files were converted into

‘‘mgf’’ files and analyzed on MASCOT software with a human UniProtKB/Swiss-Prot protein database (date: March 22, 2016 with

40912 entries). As search parameters 0.8 Da fragment mass tolerance and 10ppm precursor mass, minimal number of peptides 2,

and fdr of 0.1%, allowing 2mis-cleavages on trypsin fragments were defined. Carbamidomethyl at cysteine was set as a static modi-

fication, and oxidation ofmethionine, acetylation of lysine and protein N terminus were set as variable modification. Scaffold software

(version 4.8.4) was used to validate and count spectral peptide matches. All identified peptide sequences of both brain and B cell

samples are listed in Table S6.

Immunohistochemical stainings
In brief, slices were dewaxed through graded alcohols. Sections were then incubated in Ventana buffer, and automatically stained

with the NEXEX immunohistochemistry robot (Ventana Instruments) using primary antibody against RASGRP2 (dilution 1:50; rabbit

polyclonal to RASGRP2 - N-terminal; Key Resources Table). Finally, sections were developed using an iVIEW DAB Detection Kit

(Ventana). Omission of the primary antisera in the control slides resulted in no immunostaining at all. Sections were scanned under

equal lighting conditions at 40x magnification using a Hamamatsu tissue scanner (Nanozoomer). Hamamatsu NDPI images of each

scanned slide were transfered to a computer screen (Viewer Version DIH 4.0.0-20130402-63) and representative images were

captured. In addition, hematoxylin (Roth) and eosin (Merck) (HE) stainings were performed.

RASGRP2 reactivity
We tested RASGRP2 reactivity by assessing cytokine production in PBMCs (2.53105 cell/well) from HD (n = 11), untreated RRMS

patients (REM; n = 9) and RRMS patients under natalizumab treatment (NAT; n = 20) (Table S1) using a IFNg/IL17/IL22 Fluorospot

Kit (Mabtech) according to manufacturer’s instructions. PBMCs were cultured for 44h with vehicle control (DMSO), stimulated

with anti-CD3 antibody (mAB CD3-2, included in Fluorospot Kit) or RASGRP2 peptide pools (see above, final concentration of

pool 10 mM)) in complete RPMI medium containing 10% FCS, 2mM L-glutamine and 50 U/ml penicillin/streptomycin. Wells were

set up in duplicates for each condition and fluorescent spots were counted using a fluorospot plate reader (AID iSpot Spectrum,

AID GmbH).
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In order to test reactivity to RASGRP2 in memory T cells, cryopreserved PBMCs (13108 cells) of natalizumab-treated MS patients

were thawed and afterward depleted for CD45RA-expressing cells using magnetic cell sorting (Miltenyi). 23105 CD45RA-depleted

PBMCs were seeded per well in X-Vivo medium (10-15 replicate wells per condition) and were either unstimulated, treated with

vehicle (DMSO) or pulsed with RASGRP2 peptide pools (final concentration of pool 10 mM) or whole purified RASGRP2 protein

(Origene; 0.3 mg/ml). The 15-mer-overlapping peptides covering the whole RASGRP2 protein were organized in 9 peptide pools

with 7 peptides per pool covering the sequence of RASGRP2 from N- (pool 1) to C terminus (pool 9) (Table S7). a-CD2/CD3/

CD28 beads (Miltenyi) were used as positive control and added to 5 replicate wells at day 4 of PBMCculture. Thymidine incorporation

assay was used to measure proliferation responses to RASGRP2 after 7 days. Stimulatory index (SI) was calculated as ratio of

peptide or protein stimulation versus vehicle control. SI values > 2 were considered as positive.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with GraphPad Prism. Multiple comparison analyses were assessed with a non-parametric

one-way Kruskal-Wallis test and Dunn’s multiple comparisons test. Non-parametric two-tailed Mann-Whitney U test was performed

on data with only two groups. Wilcoxon matched-pairs signed rank test was used for analysis of paired samples. Correlation was

calculated using Spearman’s rank correlation test. P values are reported in the figures and figure legends where significant. Error

bars are shown as standard error of the mean (SEM) and are indicated in the figures. Sample sizes were chosen based on previous

experience of in vitro experiments (Mohme et al., 2013). Other quantitative and statistical methods are noted above according to their

respective technologies and analytic approaches.

DATA AND SOFTWARE AVAILABILITY

The accession numbers of RNA sequencing data of AP B- and CD4+ T cells reported in this paper are ENA: PRJEB19652 for

CD3+CD4+ cells and ENA: PRJEB23143 for CD19+ cells (https://www.ebi.ac.uk/ena).

TCRVb sequencing results reported in this paper can be accessed on the immuneACCESS database of Adaptive Biotechnologies

(https://clients.adaptivebiotech.com/pub/jelcic-2018-cell).
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Figure S1. Effector Memory T Cells Enrich in the Autoproliferating Compartment of RRMS Patients in Remission Independent of the Rounds

of Cell Divisions, Related to Figure 1 and Table S1

(A) Cell proliferationmeasured by CFSE-labeling (CFSEdim) was compared to thymidine incorporation assay using the same donors and equal amounts of PBMCs

and incubating for 7 days in serum-free medium and absence of exogenous stimulus (Spearman’s rank correlation test).

(B and C) Gating strategy of CFSE-labeled cells after 7 days of AP, analyzed by flow cytometry. (B) Gating on singlets, live- and then on CFSEdim cells including all

cell divisions (div.), CFSEmid including 1-2 divisions, CFSElow including more than 2 divisions, or non-proliferating resting cells (CFSEhi). (C) Exemplary cell subset

phenotyping of the CFSEdim, CFSEmid, CFSElow and CFSEhi cell compartment showing increasing HLA-DR expression with increasing proliferation.

(D) Frequency of AP T cells (CFSEdimCD3+) for each HD (n = 32), untreated RRMS in relapse (REL; n = 18) and RRMS in remission (REM; n = 32) (mean ± SEM;

Kruskal-Wallis test).

(E) CD4/CD8 ratio in the CFSEdimCD3+ compartment of HD (n = 32) and REM (n = 32) (whiskers: min - max). Dotted line at ratio of 1 indicates equal distribution of

CD4+ and CD8+ T cells.

(F and G) Ratio of naive/memory cell subset frequency in CFSEdim versus CFSEhi compartment of (F) CD4+ and (G) CD8+ T cells respectively is shown for HD

(n = 15) and REM (n = 24) (whiskers: min - max; Mann-WhitneyU test). A ratio of 1 (dotted line) indicates an equal proportion of the appropriate T cell subset in the

CFSEdim and CFSEhi compartment. T cell subsets: Tnaive CD45RA
+CCR7+; TCM CD45RA-CCR7+; TEM CD45RA-CCR7-; TTEMRA CD45RA+CCR7-.
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Figure S2. IFN-g Secretion Is Strongly Increased during AP in RRMS (REM) but Is Not the Cause of Increased AP, Related to Figures 1 and 2

and Table S1

(A) A second cohort of HD (n = 14; for PHA n = 10) and REM (n = 14; for PHA n = 12) was used to assess AP (unstimulated) and reactivities to conventional B- (a-IgM) or

T cell stimulation with polyclonal/broad (MLR, PHA) or antigen-specific (TTx) activation using CFSE-labeling and subsequent co-culture for 7 days in serum-free

medium. Frequency of all proliferating (CFSEdim) cells for each HD and REM under the different conditions is depicted (mean ± SEM; Mann-Whitney U test).

(B) Secretion of Th1 (IL-2, TNF, IFN-g), Th2 (IL-4, IL-5, IL-13) and Th17 (IL-17A, IL-21, IL-22) cytokines in supernatants collected after 7 days of AP (no stimulus),

conventional B- (a-IgM) or T cell stimulation with polyclonal (MLR) or antigen-specific (TTx) activation from HD (n = 14) and REM (n = 14; for TTx n = 13)

(mean ± SEM; Mann-Whitney U test).

(C) Levels of IFN-g andGM-CSF secretion in HLA-DR15-and DR15+ HD (DR15- n = 20 and DR15+ n = 12) and REM (DR15- n = 15 and DR15+ n = 17; whiskers: min

- max). Cytokine measurement was performed with bead-based immunoassay and GM-CSF by ELISA.

(D) Frequency of CFSEdim cell population (gray bars) in the presence of blocking IFN-g, blocking GM-CSF or appropriate isotype control antibodies (mean ± SEM;

n = 5 REM). Cytokine neutralization (blue line) in supernatant is depicted exemplarily for one of the donors.



Figure S3. B Cells Participate in AP and Maintain and Drive AP T Helper Cells in MS, Related to Figure 3 and Table S1

(A) Proportion of CD3+ and CD19+ cells (pie charts) in the CFSEdim compartment of HD (n = 14; for PHA n = 10) and REM (n = 14; for PHA n = 12) after AP

(unstimulated) and reactivities to conventional B- (a-IgM) or T cell stimulation with polyclonal/broad (MLR, PHA) or antigen-specific (TTx) activation using

CFSE-labeling and subsequent co-culture for 7 days in serum-free medium.

(B–D) Sorted and subsequently expanded (PHA, IL-2) AP cells (CFSEdim) fromDR15+ HD and REMwere tested for their reactivity on autologous EBV-transformed

B cells. For the co-culture experiments, we incubated 2x105 CFSE-labeled expanded bulk T cells either alone or with 5x105 irradiated (300 Gy) autologous

EBV-transformedB cells in the absence of any stimulus or the presence of blockingHLA-DR (L243) antibody or PHA, respectively. After 72 hours, 4 replicate wells

of each condition were pooled and analyzed for survival (live-dead marker) and proliferation (CFSE) by flow cytometry. Cells were gated first on CD4+ T cells to

exclude B cells, prior to analysis of live cells and then on proliferating cells. (B) Exemplary dot plots of the different conditions shown for one HD and one REM.

(C) Survival and (D) proliferation results of DR15+ HD (n = 5) and REM (n = 5) (mean ± SEM).
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Figure S4. B Cell Depletion Reduces AP and Proinflammatory Cytokine Response, whereas Response to Control Antigen Remains, Related

to Figure 4 and Table S1

(A) Secretion of Th1 (IL-2, IFN-g), Th2 (IL-5, IL-13), Th17 (IL-17A, IL-21) cytokines and GM-CSF in supernatants collected after 7 days of AP from untreated and

treated RRMS patients (REM, nihil, black, n = 32; RTX, green, n = 14; NAT, blue, n = 15; FTY, orange, n = 10; mean ± SEM; Kruskal-Wallis test).

(B–E) CFSE-labeled PBMCs of MS patients before onset of (M0 = month 0) and after RTX treatment (M3 = 3 months) as well as conditions with deletion and

transfer of CD20+ cells from PBMCs before onset of RTX (M0) to autologous PBMCs after RTX therapy (M3) were cultured for 7 days in the absence of exogenous

stimulus. Samples were analyzed for the frequency of (B) B cells (C) AP T cells, (D) activated HLA-DR+CD4+ T cells and (E) IFN-g secretion (mean ± SEM; n = 5;

Kruskal-Wallis test).

(F) Ex vivo frequency of monocytes and B cells in longitudinal RTX MS samples (mean ± SEM; n = 5; Mann-Whitney U test).

(G) Response of PBMCs fromRTX-treatedMSpatients in 7-day CFSE assaywithout antigen or in presence of tetanus toxoid (TTx) as control antigen by assessing

frequency of proliferating CFSEdim and proliferating T cells (mean ± SEM; n = 5; Mann-Whitney U test).
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Figure S5. Similar High-Frequency Overlap of Shared TCRVb Sequences between AP Cells and Brain Lesions in Two Independent Experi-

ments Despite Diverse TCRVb Repertoire, Related to Figure 5 and Tables S4 and S5

(A) Comparison of unique productive TCRVb sequences and their frequencies in CFSEhi and CFSEdim cells from the two independent CFSE experiments A and B

of peripheral blood in MS patient 1.

(B and C) Overlap of productive TCRVb sequences of the (B) CFSEhi and (C) CFSEdim compartment from peripheral blood with brain infiltrates of threeMS lesions

in two independent experiments of patient 1.

(D and E) Graphs show the frequency of productive TCRVb sequences in the isolated CFSEdim cell population (AP) of MS patient 1 in the two independent

experiments (D) A and (E) B. The graph is plotted with the TCRVb-chain against the J-chain families. Red bars indicate TCRVb sequences present in the CFSEdim

compartment that match with TCRVb sequences in brain lesions. The boxes refer to the red bars and depict the frequency of shared TCRVb sequences in the

CFSEdim compartment as well as their frequency and appearance in the different brain lesions. The data from experiment B (MS patient 1) was used for the

analyses in Figure 5.
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Figure S6. Proliferating CD4+CD45RO+ T Cells Infiltrate Preferentially the High Active Lesion, whereas CD8+CD45RO+ T Cells Are More

Globally Expanded, Related to Figures 5 and 6 and Tables S4 and S5

(A) Correlation of the number of shared unique productive TCRVb sequences in cloneset samples 1 (M) and 2 (N) with the number of unique productive TCRVb

sequences in cloneset sample 1 (M)multiplied by the number of unique productive TCRVb sequences in cloneset sample 2 (N), in order to normalize the number of

shared TCRVb sequences for the cloneset size (Zvyagin et al., 2014). Correlations were performed for overall TCRVb sequences and TCRVb sequences that were

identified in the peripheral CD4+CD45RO+ or CD8+CD45RO+ T cell compartment (Spearman’s rank correlation test).

(B) Frequencies of shared unique productive TCRVb sequences in the AP compartment and the brain lesions of MS patient 1 (experiment B). Colors indicate,

which TCRVb sequences were also identified in the peripheral CD4+CD45RO+ (green) or CD8+CD45RO+ (blue) T cell compartment. Circles correspond to brain-

matching TCRVb sequences which are found in both CFSEhi and CFSEdim cells, and triangles correspond to brain-matching TCRVb sequences only found in

CFSEdim cells. The position of the symbols reflects the corresponding frequency of the TCRVb sequence inside the AP compartment or the brain lesion.

(C) Brain-homing CD4+ TCCs from the AP compartment of MS patient 1 were analyzed for the expression of the brain-homing receptors CXCR3 and CCR6. Prior

to analysis, gates were set on live cells.
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Figure S7. Th1-Th17 Reactivity to RASGRP2 Is Influenced by AP and Increases Stepwise fromHD to REM to NAT, Related to Figures 1, 2, and

7 and Table S7

(A) Fluorospot images in PBMCs with cytokine reactivity (IFN-g and/or IL-17) to the RASGRP2 peptide pool 1, as compared to the vehicle control. The positive

control with anti-CD3 stimulation is included for comparison.

(B) Fluorospot-based cytokine reactivity in PBMCs from HD (n = 11), REM (n = 9) or RRMS patients treated with NAT (n = 20). Number of IFN-g+, IL17+ and IFN-

g+IL17+ spots is shown for the negative control (vehicle) and upon stimulation with RASGRP2 peptide pools, covering the sequence of RASGRP2 from N- (pool 1)

to C terminus (pool 9). Each condition was performed for each donor in duplicate wells. The dots represent the response in a given well. Mean ± SEM is shown

with red bars while the red dotted line depicts themean + 3x standard deviation of the vehicle control. The latter is considered as threshold for positive responses.

(C) The results from fluorospot were compared to the degree of AP measured by the CFSE assay in the same individuals (incl. HD and REM; n = 16). Number of

IFN-g+, IL17+ and IFN-g+IL17+ spots is shown for the negative control (vehicle) and upon stimulation with RASGRP2 peptide pools. Orange dots correspond to

samples with low AP (< 0.9% CFSEdim), while blue dots correspond to samples with high AP (> 0.9% CFSEdim).
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