7 research outputs found

    UV-LED Project

    Get PDF
    UV-LED is part of a small satellite technologydemonstration mission that willdemonstrate non-contacting charge controlof an isolated or floating mass usingnew solid-state ultra-violet light emittingdiodes (UV-LEDs). Integrated tothe Saudisat-4 spacecraft and launchedonboard the Dnepr in June 19, 2014,the project is a collaboration betweenthe NASA Ames Research Center (ARC),Stanford University, and King AbdulazizCity for Science and Technology(KACST). This technology demonstrationwill validate a novel method of chargecontrol that will improve the performanceof drag-free spacecraft allowingfor concurrent science collection duringcharge management operations as wellas reduce the mass, power and volumerequired while increasing lifetime and reliabilityof a charge management subsystem.These improvements are crucial tothe success of ground breaking missionssuch as LISA and BBO, and demonstratethe ability of low cost small satellite missionsto provide technological advancesthat far exceed mission cost

    Properties of Protostars in the Elephant Trunk in the Globule IC 1396A

    Get PDF
    Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, ε, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10^–6 M☉ yr^–1 and present stellar masses 0.1-2 M☉. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γb, has luminosity less than 0.1 L☉, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γb. The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and bright Hα emission; therefore, they are young, disk-bearing, classical T Tauri stars. The disk properties change significantly with source luminosity: low-mass (G-K) stars have prominent 9-11 emission features due to amorphous silicates while higher-mass (A-F) stars have weaker features requiring abundant crystalline silicates. A mineralogical model that fits the wide- and low-amplitude silicate feature of IC 1396A:θ requires small grains of crystalline olivine (11.3 μm peak) and another material to to explain its 9.1 μm peak; reasonable fits are obtained with a phyllosilicate, quartz, or relatively large (greater than 10 μm) amorphous olivine grains. The distribution of Class I sources is concentrated within the molecular globule, while the Class II sources are more widely scattered. Combined with the spectral results, this suggests two phases of star formation, the first (4 Myr ago) leading to the widespread Class II sources and the central O star of IC 1396 and the second (less than 1 Myr ago) occurring within the globule. The recent phase was likely triggered by the wind and radiation of the central O star of the IC 1396 H II region

    UV-LED

    Get PDF
    UV-LED is part of a small satellite technology demonstration mission that will demonstrate non-contacting charge control of an isolated or floating mass using new solid-state ultra-violet light emitting diodes (UV-LEDs). Integrated to the Saudisat-4 spacecraft and launched onboard the Dnepr in June 19, 2014, the project is a collaboration between the NASA Ames Research Center (ARC), Stanford University, and King Abdulaziz City for Science and Technology (KACST). This technology demonstration will validate a novel method of charge control that will improve the performance of drag-free spacecraft allowing for concurrent science collection during charge management operations as well as reduce the mass, power and volume required while increasing lifetime and reliability of a charge management subsystem. These improvements are crucial to the success of ground breaking missions such as LISA and BBO, and demonstrate the ability of low cost small satellite missions to provide technological advances that far exceed mission cost
    corecore