120 research outputs found

    The human resources management contribution to social responsibility and environmental sustainability: explorations from Ibero-America

    Get PDF
    [EN] In this paper we aim to advance the discussion on HRM¿s quest to create value around social responsibility and environmental sustainability. We explore the perceptions reported by Human Resource managers in three Ibero-American countries (Spain, the Dominican Republic and Costa Rica). We focus on the hospitality sector, one of particular relevancy for these countries and with significant sustainability challenges. Relying on in-depth interviews in twenty-eight organizations and a mixed-methods approach, we examine HR managers¿ underlying notions around social and environmental issues, stakeholder collaboration, HRM practices, roles and internal organization. Analysis of the interviews suggests varying views on those dimensions, as well as identifies Active and Advanced firms, the latter showing more commitment to sustainability (as part of the organizational culture), usage of HRM practices and engagement with multiple stakeholders. From this empirical exploration and relying on current sustainability developments, we contribute to the literature by outlining an externally-oriented model (centred on corporate priorities, communities¿ flourishing and ecosystems¿ resilience) aiming to advance HRM¿s engagement with sustainability-driven agendas.Alcaraz, JM.; Susaeta-Erburu, L.; Suárez-Ruz, ME.; Colón, C.; Gutierrez, I.; Cunha, R.; Leguizamon, F.... (2017). The human resources management contribution to social responsibility and environmental sustainability: explorations from Ibero-America. The International Journal of Human Resource Management. https://doi.org/10.1080/09585192.2017.1350732

    Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

    Get PDF
    Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film

    Reduction of volatile acidity of wines by selected yeast strains

    Get PDF
    Herein we isolate and characterize wine yeasts with ability to reduce volatile acidity of wines using a refermentation process, which consists in mixing the acidic wine with freshly crushed grapes or musts or, alternatively, in the incubation with the residual marc. From a set of 135 yeast isolates, four strains revealed ability to use glucose and acetic acid simultaneously. Three of them were identified as Saccharomyces cerevisiae and one as Lachancea thermotolerans. Among nine commercial S. cerevisiae strains, strains S26, S29 and S30 display similar glucose and acetic acid initial simultaneous consumption pattern and were assessed in refermentation assays. In a medium containing an acidic wine with high glucose/low ethanol concentrations, under low oxygen availability, strain S29 is the most efficient one, whereas L. thermotolerans 44C is able to decrease significantly acetic acid similar to the control strain Zygosaccharomyces bailii ISA 1307, but only under aerobic conditions. Conversely, for low glucose/high ethanol concentrations, under aerobic conditions, S26 is the most efficient acid degrading strain, while under limited-aerobic conditions, all the S. cerevisiae strains studied display acetic acid degradation efficiencies identical to Z. bailii. Moreover, S26 strain also reveals capacity to decrease volatile acidity of wines. Together, the S. cerevisiae strains characterized herein appear promising for the oenological removal of volatile acidity of acidic wines.Fundação para a Ciência e a Tecnologia (FCT) - Programa POCI 2010 (FEDER/FCT, POCI/AGR/56102/2004, PTDC/AGRALI/71460/2006

    A biomaterials approach to influence stem cell fate in injectable cell-based therapies

    Get PDF
    Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation
    • …
    corecore