45 research outputs found

    The EPATH trial

    Get PDF
    Observational studies suggested a link between bone disease and left ventricular (LV) dysfunction that may be pronounced in hyperparathyroid conditions. We therefore aimed to test the hypothesis that circulating markers of bone turnover correlate with LV function in a cohort of patients with primary hyperparathyroidism (pHPT). Cross-sectional data of 155 subjects with pHPT were analyzed who participated in the “Eplerenone in Primary Hyperparathyroidism” (EPATH) Trial. Multivariate linear regression analyses with LV ejection fraction (LVEF, systolic function) or peak early transmitral filling velocity (e’, diastolic function) as dependent variables and N-terminal propeptide of procollagen type 1 (P1NP), osteocalcin (OC), bone- specific alkaline phosphatase (BALP), or beta-crosslaps (CTX) as the respective independent variable were performed. Analyses were additionally adjusted for plasma parathyroid hormone, plasma calcium, age, sex, HbA1c, body mass index, mean 24-hours systolic blood pressure, smoking status, estimated glomerular filtration rate, antihypertensive treatment, osteoporosis treatment, 25-hydroxy vitamin D and N-terminal pro-brain B-type natriuretic peptide. Independent relationships were observed between P1NP and LVEF (adjusted β-coefficient = 0.201, P = 0.035) and e’ (β = 0.188, P = 0.042), respectively. OC (β = 0.192, P = 0.039) and BALP (β = 0.198, P = 0.030) were each independently related with e’. CTX showed no correlations with LVEF or e’. In conclusion, high bone formation markers were independently and paradoxically related with better LV diastolic and, partly, better systolic function, in the setting of pHPT. Potentially cardio-protective properties of stimulated bone formation in the context of hyperparathyroidism should be explored in future studies

    Improvement of cancellous bone microstructure in patients on teriparatide following alendronate pretreatment

    Get PDF
    An increase in procollagen type I amino-terminal propeptide (PINP) early after teriparatide initiation was shown to correlate with increased lumbar spine areal BMD and is a good predictor of the anabolic response to teriparatide. Few data exist correlating PINP and bone microstructure, and no data exist in patients on teriparatide following prior potent antiresorptive treatment. This exploratory analysis aimed to investigate the effects of teriparatide on cancellous bone microstructure and correlations of bone markers with microstructure in alendronate-pretreated patients. This was a post hoc analysis of changes in bone markers and three-dimensional indices of bone microstructure in paired iliac crest biopsies from a prospective teriparatide treatment study in postmenopausal women with osteoporosis who were either treatment-naïve (TN, n = 16) or alendronate-pretreated (ALN, n = 29) at teriparatide initiation. Teriparatide (20 μg/day) was given for 24 months; biopsies were taken at baseline and endpoint, and serum concentrations of PINP and type 1 collagen cross-linked C-telopeptide (βCTX) were measured at intervals up to 24 months. In the TN and ALN groups, respectively, mean (SD) increases in three-dimensional bone volume/tissue volume were 105 (356)% (P = 0.039) and 55 (139)% (P < 0.005) and trabecular thickness 30.4 (30)% (P < 0.001) and 30.8 (53)% (P < 0.001). No significant changes were observed in trabecular number or separation. In the ALN patients, 3-month change of neither PINP nor βCTX correlated with indices of cancellous bone microstructure. However, 12-month changes in biochemical bone markers correlated significantly with improvements in bone volume/tissue volume, r = 0.502 (P < 0.01) and r = 0.378 (P < 0.05), trabecular number, r = 0.559 (P < 0.01) and r = 0.515 (P < 0.01), and reduction of trabecular separation, r = −0.432 (P < 0.05) and r = −0.530 (P < 0.01), for PINP and βCTX, respectively. We conclude that cancellous bone microstructure improved with teriparatide therapy irrespective of prior antiresorptive use

    Denosumab compared with risedronate in postmenopausal women suboptimally adherent to alendronate therapy: Efficacy and safety results from a randomized open-label study

    Get PDF
    Denosumab has been shown to reduce new vertebral, nonvertebral, and hip fractures in postmenopausal women with osteoporosis. In subjects who were treatment-naive or previously treated with alendronate, denosumab was associated with greater gains in bone mineral density (BMD) and decreases in bone turnover markers when compared with alendronate-treated subjects. This trial was designed to compare the efficacy and safety of denosumab with risedronate over 12 months in postmenopausal women who transitioned from daily or weekly alendronate treatment and were considered to be suboptimally adherent to therapy. In this randomized, open-label study, postmenopausal women aged ≥55 years received denosumab 60 mg subcutaneously every 6 months or risedronate 150 mg orally every month for 12 months. Endpoints included percentage change from baseline in total hip BMD (primary endpoint), femoral neck, and lumbar spine BMD at month 12, and percentage change from baseline in sCTX-1 at months 1 and 6. Safety was also assessed. A total of 870 subjects were randomized (435, risedronate; 435, denosumab) who had a mean (SD) age of 67.7 (6.9) years, mean (SD) BMD T-scores of -1.6 (0.9), -1.9 (0.7), and -2.2 (1.2) at the total hip, femoral neck, and lumbar spine, respectively, and median sCTX-1 of 0.3 ng/mL at baseline. At month 12, denosumab significantly increased BMD compared with risedronate at the total hip (2.0% vs 0.5%), femoral neck (1.4% vs 0%), and lumbar spine (3.4% vs 1.1%; p<0.0001 at all sites). Denosumab significantly decreased sCTX-1 compared with risedronate at month 1 (median change from baseline of -78% vs -17%; p<0.0001) and month 6 (-61% vs -23%; p<0.0001). Overall and serious adverse events were similar between groups. In postmenopausal women who were suboptimally adherent to alendronate therapy, transitioning to denosumab was well tolerated and more effective than risedronate in increasing BMD and reducing bone turnover

    Relationship between bone turnover and left ventricular function in primary hyperparathyroidism: The EPATH trial

    Get PDF
    Observational studies suggested a link between bone disease and left ventricular (LV) dysfunction that may be pronounced in hyperparathyroid conditions. We therefore aimed to test the hypothesis that circulating markers of bone turnover correlate with LV function in a cohort of patients with primary hyperparathyroidism (pHPT). Cross-sectional data of 155 subjects with pHPT were analyzed who participated in the \uaaEplerenone in Primary Hyperparathyroidism \uba (EPATH) Trial. Multivariate linear regression analyses with LV ejection fraction (LVEF, systolic function) or peak early transmitral filling velocity (e', diastolic function) as dependent variables and N-terminal propeptide of procollagen type 1 (P1NP), osteocalcin (OC), bone-specific alkaline phosphatase (BALP), or beta-crosslaps (CTX) as the respective independent variable were performed. Analyses were additionally adjusted for plasma parathyroid hormone, plasma calcium, age, sex, HbA1c, body mass index, mean 24-hours systolic blood pressure, smoking status, estimated glomerular filtration rate, antihypertensive treatment, osteoporosis treatment, 25-hydroxy vitamin D and N-terminal probrain B-type natriuretic peptide. Independent relationships were observed between P1NP and LVEF (adjusted \u3b2-coefficient = 0.201, P = 0.035) and e' (\u3b2 = 0.188, P = 0.042), respectively. OC (\u3b2 = 0.192, P = 0.039) and BALP (\u3b2 = 0.198, P = 0.030) were each independently related with e'. CTX showed no correlations with LVEF or e'. In conclusion, high bone formation markers were independently and paradoxically related with better LV diastolic and, partly, better systolic function, in the setting of pHPT. Potentially cardio-protective properties of stimulated bone formation in the context of hyperparathyroidism should be explored in future studies

    Effectiveness of Teriparatide in Women Over 75 Years of Age with Severe Osteoporosis: 36-Month Results from the European Forsteo Observational Study (EFOS)

    Get PDF
    This predefined analysis of the European Forsteo Observational Study (EFOS) aimed to describe clinical fracture incidence, back pain, and health-related quality of life (HRQoL) during 18 months of teriparatide treatment and 18 months post-teriparatide in the subgroup of 589 postmenopausal women with osteoporosis aged ≥75 years. Data on clinical fractures, back pain (visual analogue scale, VAS), and HRQoL (EQ-5D) were collected over 36 months. Fracture data were summarized in 6-month intervals and analyzed using logistic regression with repeated measures. A repeated-measures model analyzed changes from baseline in back pain VAS and EQ-VAS. During the 36-month observation period, 87 (14.8 %) women aged ≥75 years sustained a total of 111 new fractures: 37 (33.3 %) vertebral fractures and 74 (66.7 %) nonvertebral fractures. Adjusted odds of fracture was decreased by 80 % in the 30 to <36–month interval compared with the first 6-month interval (P < 0.009). Although the older subgroup had higher back pain scores and poorer HRQoL at baseline than the younger subgroup, both age groups showed significant reductions in back pain and improvements in HRQoL postbaseline. In conclusion, women aged ≥75 years with severe postmenopausal osteoporosis treated with teriparatide in normal clinical practice showed a reduced clinical fracture incidence by 30 months compared with baseline. An improvement in HRQoL and, possibly, an early and significant reduction in back pain were also observed, which lasted for at least 18 months after teriparatide discontinuation when patients were taking other osteoporosis medication. The results should be interpreted in the context of an uncontrolled observational study

    Graz Endocrine Causes of Hypertension (GECOH) study: a diagnostic accuracy study of aldosterone to active renin ratio in screening for primary aldosteronism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary aldosteronism (PA) affects approximately 5 to 10% of all patients with arterial hypertension and is associated with an excess rate of cardiovascular complications that can be significantly reduced by a targeted treatment. There exists a general consensus that the aldosterone to renin ratio should be used as a screening tool but valid data about the accuracy of the aldosterone to renin ratio in screening for PA are sparse. In the Graz endocrine causes of hypertension (GECOH) study we aim to prospectively evaluate diagnostic procedures for PA.</p> <p>Methods and design</p> <p>In this single center, diagnostic accuracy study we will enrol 400 patients that are routinely referred to our tertiary care center for screening for endocrine hypertension. We will determine the aldosterone to active renin ratio (AARR) as a screening test. In addition, all study participants will have a second determination of the AARR and will undergo a saline infusion test (SIT) as a confirmatory test. PA will be diagnosed in patients with at least one AARR of ≥ 5.7 ng/dL/ng/L (including an aldosterone concentration of ≥ 9 ng/dL) who have an aldosterone level of ≥ 10 ng/dL after the saline infusion test. As a primary outcome we will calculate the receiver operating characteristic curve of the AARR in diagnosing PA. Secondary outcomes include the test characteristics of the saline infusion test involving a comparison with 24 hours urine aldosterone levels and the accuracy of the aldosterone to renin activity ratio in diagnosing PA. In addition we will evaluate whether the use of beta-blockers significantly alters the accuracy of the AARR and we will validate our laboratory methods for aldosterone and renin.</p> <p>Conclusion</p> <p>Screening for PA with subsequent targeted treatment is of great potential benefit for hypertensive patients. In the GECOH study we will evaluate a standardised procedure for screening and diagnosing of this disease.</p
    corecore