3,439 research outputs found

    Enjoy Simple Format

    Get PDF

    Self-monitoring for improving control of blood pressue in patients with hypertension

    Get PDF
    The objective of this review is to determine the effect of SBPM in adults with hypertension on blood pressure control as compared to OBPM or usual care

    Congress Needs Help

    Get PDF

    Soil nitrogen affects phosphorus recycling: foliar resorption and plant–soil feedbacks in a northern hardwood forest

    Get PDF
    Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P , 0.01) and proficiency (P ¼ 0.01) increased with soil N content to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain based on single-element limitation, but follows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the O horizon: P resorption was high where resin-available P was low in the Oe (P , 0.01 for efficiency, P , 0.001 for proficiency) and N resorption was high where potential N mineralization in the Oa was low (P , 0.01 for efficiency and 0.11 for proficiency). Since leaf litter is a principal source of N and P to the O horizon, low nutrient availability there could be a result rather than a cause of high resorption. The striking effect of soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem

    An Ion Microprobe Study of CAIs from CO3 Meteorites

    Get PDF
    When attempting to interpret the history of Ca, Al-rich inclusions (CAIs) it is often difficult to distinguish between primary features inherited from the nebula and those produced during secondary processing on the parent body. We have undertaken a systematic study of CAIs from 10 CO chondrites, believed to represent a metamorphic sequence [e.g., 1], with the goal of distinguishing primary and secondary features. ALHA 77307 (3.0), Colony (3.0), Kainsaz (3.1), Felix (3.2), ALH 82101 (3.3), Omans (3.3), Lancé (3.4), ALHA 77003 (3.5), Warrenton (3.6), and Isna (3. 7) were examined by SEM and optical microscopy. We have identified 141 CAIs within these samples, and studied in detail the petrology of 34 inclusions

    Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole

    Get PDF
    During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident

    Recovery from disturbance requires resynchronization of ecosystem nutrient cycles

    Get PDF
    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance

    In-situ measurements of total reactive nitrogen, total water vapor, and aerosols in polar stratospheric clouds in the Antarctic stratosphere

    Get PDF
    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented
    • …
    corecore