74 research outputs found

    Interstellar dimethyl ether gas-phase formation: a quantum chemistry and kinetics study

    Get PDF
    Dimethyl ether is one of the most abundant interstellar complex organic molecules. Yet its formation route remains elusive. In this work, we have performed electronic structure and kinetics calculations to derive the rate coefficients for two ion-molecule reactions recently proposed as a gas-phase formation route of dimethyl ether in interstellar objects, namely CH3_3OH + CH3_3OH2+_2^+ →\rightarrow (CH3_3)2_2OH+^+ + H2_2O followed by (CH3_3)2_2OH+^+ + NH3_3 →\rightarrow CH3_3OCH3_3 + NH4+_4^+. A comparison with previous experimental rate coefficients for the reaction CH3_3OH + CH3_3OH2+_2^+ sustains the accuracy of the present calculations and allow a more reliable extrapolation at the low temperatures of interest in interstellar objects (10-100 K). The rate coefficient for the reaction (CH3_3)2_2OH+^+ + NH3_3 is, instead, provided for the first time ever. The rate coefficients derived in this work essentially confirm the prediction by Taquet et al. (2016) concerning dimethyl ether formation in hot cores/corinos. Nevertheless, this formation route cannot be efficient in cold objects (like prestellar cores) where dimethyl ether is also detected, because ammonia has a very low abundance in those environments

    A Novel Intermolecular Potential to Describe the Interaction Between the Azide Anion and Carbon Nanotubes

    Get PDF
    47 P.International audienceIn this contribution we propose a novel and accurate intermolecular potential that can be used for the simulation of the azide anion confined inside carbon nanotubes of arbitrary size. The peculiarity of our approach is to include an explicit term, modeling the induction attractive contributions from the negatively charged azide ion, that can be generalized to other ions confined in carbon nanotubes of different size and length. Through a series of accurate DLPNO-CCSD(T) calculations, we show that this potential reproduces the ab initio interaction energy to within a few kcal/mol. The potential is implemented in a molecular dynamics program, with which we carried out illustrative simulations to demonstrate the effectiveness of our approach. At last, the guidelines provided by this investigation can be applied to build up force fields for many neutral/ionic molecular species confined within carbon nanotubes; a crucial requirement to carry out molecular dynamics simulations under a variety of conditions

    Ion-water cluster molecular dynamics using a semiempirical intermolecular potential

    Get PDF
    Classical Molecular Dynamics (MD) simulations have been performed to describe structural and dynamical properties of the water clusters forming around the Na + and K + . The dynamics of K + and Na + was investigated for small water clusters [K(H 2 O) n ] + and [Na(H 2 O) n ] + (n = 3 - 8), isolated in gas phase following the structure transformation through isomerizations between the accessible energy minima. The extent to which a classical molecular simulation accurately predicts properties depends on the quality of the force field used to model the interactions in the fluid. This has been explored by exploiting the flexibility of the Improved Lennard-Jones (ILJ) function in describing the long-range interaction of ionic water system

    Molecular dynamics of CH4/N2 mixtures on a flexible graphene layer: adsorption and selectivity case study

    Get PDF
    We theoretically investigate graphene layers, proposing them as membranes of subnanometer size suitable for CH4/N2 separation and gas uptake. The observed potential energy surfaces, representing the intermolecular interactions within the CH4/N2 gaseous mixtures and between these and the graphene layers, have been formulated by adopting the so-called Improved Lennard-Jones (ILJ) potential, which is far more accurate than the traditional Lennard-Jones potential. Previously derived ILJ force fields are used to perform extensive molecular dynamics simulations on graphene's ability to separate and adsorb the CH4/N2 mixture. Furthermore, the intramolecular interactions within graphene were explicitly considered since they are responsible for its flexibility and the consequent out-of-plane movements of the constituting carbon atoms. The effects on the adsorption capacity of graphene caused by introducing its flexibility in the simulations are assessed via comparison of different intramolecular force fields giving account of flexibility against a simplified less realistic model that considers graphene to be rigid. The accuracy of the potentials guarantees a quantitative description of the interactions and trustable results for the dynamics, as long as the appropriate set of intramolecular and intermolecular force fields is chosen. In particular it is shown that only if the flexibility of graphene is explicitly taken into account, a simple united-atom interaction potential can provide correct predictions. Conversely, when using an atomistic model, neglecting in the simulations the intrinsic flexibility of the graphene sheet has a minor effect. From a practical point of view, the global analysis of the whole set of results proves that these nanostructures are versatile materials competitive with other carbon-based adsorbing membranes suitable to cope with CH4 and N2 adsorption

    Adsorption of hydrogen molecules on carbon nanotubes using quantum chemistry and molecular dynamics

    Get PDF
    Physisorption and storage of molecular hydrogen on single-walled carbon nanotube (SWCNT) of various diameters and chiralities are studied by means of classical molecular dynamics (MD) simulations and a force field validated using DFT-D2 and CCSD(T) calculations. A nonrigid carbon nanotube model is implemented with stretching (C−C) and valence angle potentials (C− C−C) formulated as Morse and Harmonic cosine potentials, respectively. Our results evidence that the standard Lennard-Jones potential fails to describe the H2−H2 binding energies. Therefore, our simulations make use of a potential that contains two-body term with parameters obtained from fitting CCSD(T)/CBS binding energies. From our MD simulations, we have analyzed the interaction energies, radial distribution functions, gravimetric densities (% wt), and the distances of the adsorbed H2 layers to the three zigzag type of nanotubes (5,0), (10,0), and (15,0) at 100 and 300 K

    Nitrogen gas on graphene: Pairwise interaction potentials

    Get PDF
    We investigate different types of potential parameters for the graphene-nitrogen interaction. Interaction energies calculated at DFT level are fitted with the semi-emperical Improved Lennard-Jones potential. Both a pseudo-atom potential and a full atomistic potential are considered. Furthermore, we consider the influence of the electrostatic part on the parameters using different charge schemes found in the literature as well as optimizing the charges ourselves. We have obtained parameters for both the nitrogen dimer and the graphene-nitrogen system. For the former, the four-charges Cracknell scheme reproduces with high precision the CCSD(T) interaction energy as well as the experimental diffusion coefficient in both the pseudo-atom and full atomstic potential. In the second case, the atom-atom model provides an average interaction energy of 2.3 kcal/mol, comparable with the experimental graphene- N2 interaction of 2.4 kcal/mol

    Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks

    Get PDF
    Different force fields for the graphene–CH4 system are proposed including pseudo-atom and full atomistic models. Furthermore, different charge schemes are tested to evaluate the electrostatic interaction for the CH4 dimer. The interaction parameters are optimized by fitting to interaction energies at the DFT level, which were themselves benchmarked against CCSD(T) calculations. The potentials obtained with both the pseudo-atom and full atomistic approaches describe accurately enough the average interaction in the methane dimer as well as in the graphene–methane system. Moreover, the atom–atom potentials also correctly provide the energies associated with different orientations of the molecules. In the atomistic models, charge schemes including small charges allow for the adequate representation of the stability sequence of significant conformations of the methane dimer. Additionally, an intermediate charge of −0.63e on the carbon atom in methane leads to bond energies with errors of ca. 0.07 kcal mol−1 with respect to the CCSD(T) values for the methane dimer. For the graphene–methane interaction, the atom–atom potential model predicts an average interaction energy of 2.89 kcal mol−1, comparable to the experimental interaction energy of 3.00 kcal mol−1. Finally, the presented force fields were used to obtain self-diffusion coefficients that were checked against the experimental value found in the literature. The no-charge and Hirshfeld charge atom–atom models perform extremely well in this respect, while the cheapest potential considered, a pseudo-atom model without charges, still performs reasonably well
    • …
    corecore