45 research outputs found

    Modeling Atmospheric Lines By the Exoplanet Community (MALBEC) version 1.0: A CUISINES radiative transfer intercomparison project

    Full text link
    Radiative transfer (RT) models are critical in the interpretation of exoplanetary spectra, in simulating exoplanet climates and when designing the specifications of future flagship observatories. However, most models differ in methodologies and input data, which can lead to significantly different spectra. In this paper, we present the experimental protocol of the MALBEC (Modeling Atmospheric Lines By the Exoplanet Community) project. MALBEC is an exoplanet model intercomparison project (exoMIP) that belongs to the CUISINES (Climates Using Interactive Suites of Intercomparisons Nested for Exoplanet Studies) framework which aims to provide the exoplanet community with a large and diverse set of comparison and validation of models. The proposed protocol tests include a large set of initial participating RT models, a broad range of atmospheres (from Hot Jupiters to temperate terrestrials) and several observation geometries, which would allow us to quantify and compare the differences between different RT models used by the exoplanetary community. Two types of tests are proposed: transit spectroscopy and direct imaging modeling, with results from the proposed tests to be published in dedicated follow-up papers. To encourage the community to join this comparison effort and as an example, we present simulation results for one specific transit case (GJ-1214 b), in which we find notable differences in how the various codes handle the discretization of the atmospheres (e.g., sub-layering), the treatment of molecular opacities (e.g., correlated-k, line-by-line) and the default spectroscopic repositories generally used by each model (e.g., HITRAN, HITEMP, ExoMol)

    The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 au heliocentric distance range inbound

    Get PDF
    Context. The ESA Rosetta spacecraft, currently orbiting around cornet 67P/Churyumov-Gerasimenko, has already provided in situ measurements of the dust grain properties from several instruments, particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution. Aims. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014. Methods. A Monte Carlo dust tail code, which has already been used to characterise the dust environments of several comets and active asteroids, has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from. Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately. Results. The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is alpha = -3, instead of alpha = -2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 AU, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 AU. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment

    Pollution trends using bark of morus alba in the cities of buenos aires and mendoza (Argentina) Tendências de poluição usando cascas de morus alba nas cidades de buenos aires e mendoza (Argentina)

    Get PDF
    A comparative study of elements deposited on tree bark was carried out for urban and periurban areas of two of the most important cities in Argentina. The content of Fe, Mg, Al, Mn, Zn, Pb, Ba, Cr, Hg, Cu, Ni, Cd and Sb was determined by inductively coupled plasma atomic emission spectrometry (ICP-OES) in Morus alba tree bark collected in the cities of Buenos Aires and Mendoza. The main air pollutants detected in the Buenos Aires urban area were Ba, Cr, Cu and Ni and indicate significative difference from the Mendoza urban and periurban areas. Significantly, higher concentrations of Zn, Ba, Cr and Cu were recorded in the periurban area of the city of Buenos Aires than in Mendoza. Bark samples were strongly influenced by dust and show Al, Fe, Mg and other element accumulations that indicate that soil particles were carried out by wind. Elements like Ba and Zn, commonly linked to traffic emissions, showed the highest concentrations in the Buenos Aires metropolitan area, possibly due to more intensive vehicular traffic. Our results indicated that intensity of vehicular traffic and not city structure is responsible for air pollution.<br>Um estudo comparativo dos elementos depositados nas cascas das árvores foi realizado nas áreas urbanas e na periferia de duas cidades das mais importantes da Argentina. Os índices do Fe, Mg, Al, Mn, Zn, Pb, Ba, Cr, Cu, Ni e do Sb foram determinados pela espectrometria da emissão atômica com plasma acoplado indutivamente (ICP-OES) nas cascas da árvore Morus alba, coletados nas cidades de Buenos Aires e Mendoza. Os principais elementos da contaminação do ar detectadas na área urbana de Buenos Aires foram Ba, Cr, Cu e Ni, que indicaram diferenças significativas nas áreas urbanas e na periferia de Mendoza. Uma concentração do Zn, Ba, Cr e do Cu foi achada na periferia da cidade de Buenos Aires, significativamente mais elevada do que em Mendoza. As amostras da casca foram influenciadas fortemente pela poeira e mostraram que Al, Fe, Mg e a acumulação de outros elementos indicaram que as partículas do solo foram espalhadas pelo vento. Na área metropolitana de Buenos Aires, o Ba e o Zn apresentaram as mais altas concentrações, possivelmente por causa do intenso tráfego automotor. O trabalho atual é uma contribuição preliminar, usando-se as árvores de Morus alba como um método indireto para estimar as tendências da poluição

    Modeling Atmospheric Lines by the Exoplanet Community (MALBEC) Version 1.0: A CUISINES Radiative Transfer Intercomparison Project

    No full text
    Radiative transfer (RT) models are critical in the interpretation of exoplanetary spectra, in simulating exoplanet climates, and when designing the specifications of future flagship observatories. However, most models differ in methodologies and input data, which can lead to significantly different spectra. In this paper, we present the experimental protocol of the Modeling Atmospheric Lines By the Exoplanet Community (MALBEC) project. MALBEC is an exoplanet model intercomparison project that belongs to the Climates Using Interactive Suites of Intercomparisons Nested for Exoplanet Studies framework, which aims to provide the exoplanet community with a large and diverse set of comparison and validation of models. The proposed protocol tests include a large set of initial participating RT models, a broad range of atmospheres (from hot Jupiters to temperate terrestrials), and several observation geometries, which would allow us to quantify and compare the differences between different RT models used by the exoplanetary community. Two types of tests are proposed: transit spectroscopy and direct imaging modeling, with results from the proposed tests to be published in dedicated follow-up papers. To encourage the community to join this comparison effort and as an example, we present simulation results for one specific transit case (GJ-1214 b), in which we find notable differences in how the various codes handle the discretization of the atmospheres (e.g., sub-layering), the treatment of molecular opacities (e.g., correlated- k , line-by-line) and the default spectroscopic repositories generally used by each model (e.g., HITRAN, HITEMP, ExoMol)
    corecore