79 research outputs found

    Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization

    Get PDF
    The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during RasV12 immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators

    Minotaur is critical for primary piRNA biogenesis

    Get PDF
    Piwi proteins and their associated small RNAs are essential for fertility in animals. In part, this is due to their roles in guarding germ cell genomes against the activity of mobile genetic elements. piRNA populations direct Piwi proteins to silence transposon targets and, as such, form a molecular code that discriminates transposons from endogenous genes. Information ultimately carried by piRNAs is encoded within genomic loci, termed piRNA clusters. These give rise to long, single-stranded, primary transcripts that are processed into piRNAs. Despite the biological importance of this pathway, neither the characteristics that define a locus as a source of piRNAs nor the mechanisms that catalyze primary piRNA biogenesis are well understood. We searched an EMS-mutant collection annotated for fertility phenotypes for genes involved in the piRNA pathway. Twenty-seven homozygous sterile strains showed transposon-silencing defects. One of these, which strongly impacted primary piRNA biogenesis, harbored a causal mutation in CG5508, a member of the Drosophila glycerol-3-phosphate O-acetyltransferase (GPAT) family. These enzymes catalyze the first acylation step on the path to the production of phosphatidic acid (PA). Though this pointed strongly to a function for phospholipid signaling in the piRNA pathway, a mutant form of CG5508, which lacks the GPAT active site, still functions in piRNA biogenesis. We have named this new biogenesis factor Minotaur

    Unexpected similarities between C9ORF72 and sporadic forms of ALS/FTD suggest a common disease mechanism

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA-binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Previously, we reported that the sequestration of hnRNP H altered the splicing of target transcripts in C9ALS patients (Conlon et al., 2016). Here, we show that this signature also occurs in half of 50 postmortem sporadic, non-C9 ALS/FTD brains. Furthermore, and equally surprisingly, these ‘like-C9’ brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum

    Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Get PDF
    BACKGROUND: X chromosome inactivation (XCI) is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi) in normal female cells, leaving them with a single active X (Xa) as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1) that normal development requires a ratio of one Xa per diploid autosomal set, and 2) that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. RESULTS: Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. CONCLUSION: The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio

    Selenocysteine Insertion Sequence Binding Protein 2L Is Implicated as a Novel Post-Transcriptional Regulator of Selenoprotein Expression

    Get PDF
    The amino acid selenocysteine (Sec) is encoded by UGA codons. Recoding of UGA from stop to Sec requires a Sec insertion sequence (SECIS) element in the 3′ UTR of selenoprotein mRNAs. SECIS binding protein 2 (SBP2) binds the SECIS element and is essential for Sec incorporation into the nascent peptide. SBP2-like (SBP2L) is a paralogue of SBP2 in vertebrates and is the only SECIS binding protein in some invertebrates where it likely directs Sec incorporation. However, vertebrate SBP2L does not promote Sec incorporation in in vitro assays. Here we present a comparative analysis of SBP2 and SBP2L SECIS binding properties and demonstrate that its inability to promote Sec incorporation is not due to lower SECIS affinity but likely due to lack of a SECIS dependent domain association that is found in SBP2. Interestingly, however, we find that an invertebrate version of SBP2L is fully competent for Sec incorporation in vitro. Additionally, we present the first evidence that SBP2L interacts with selenoprotein mRNAs in mammalian cells, thereby implying a role in selenoprotein expression

    Size matters: a view of selenocysteine incorporation from the ribosome

    Get PDF
    This review focuses on the known factors required for selenocysteine (Sec) incorporation in eukaryotes and highlights recent findings that have compelled us to propose a new model for the mechanism of Sec incorporation. In light of this data we also review the controversial aspects of the previous modelspecifically regarding the proposed interaction between SBP2 and eEFSec. In addition, the relevance of two recently discovered factors in the recoding of Sec are reviewed. The role of the ribosome in this process is emphasized along with a detailed analysis of kinkturn structures present in the ribosome and the L7Ae RNA-binding motif present in SBP2 and other proteins

    Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex

    Get PDF
    Fine-tuning of X chromosomal gene expression in Drosophila melanogaster involves the selective interaction of the Dosage Compensation Complex (DCC) with the male X chromosome, in order to increase the transcription of many genes. However, the X chromosomal DNA sequences determining DCC binding remain elusive. By adapting a ‘one-hybrid’ assay, we identified minimal DNA elements that direct the interaction of the key DCC subunit, MSL2, in cells. Strikingly, several such novel MSL2 recruitment modules have very different DNA sequences. The assay revealed a novel, 40 bp DNA element that is necessary for recruitment of DCC to an autosomal binding site in flies in the context of a longer sequence and sufficient by itself to direct recruitment if trimerized. Accordingly, recruitment of MSL2 to the single 40 bp element in cells was weak, but as a trimer approached the power of the strongest DCC recruitment site known to date, the roX1 DH site. This element is the shortest MSL2 recruitment sequence known to date. The results support a model for MSL2 recruitment according to which several different, degenerate sequence motifs of variable affinity cluster and synergise to form a high affinity site

    Identification and Characterization of Full-Length cDNAs in Channel Catfish (Ictalurus punctatus) and Blue Catfish (Ictalurus furcatus)

    Get PDF
    Background: Genome annotation projects, gene functional studies, and phylogenetic analyses for a given organism all greatly benefit from access to a validated full-length cDNA resource. While increasingly common in model species, fulllength cDNA resources in aquaculture species are scarce. Methodology and Principal Findings: Through in silico analysis of catfish (Ictalurus spp.) ESTs, a total of 10,037 channel catfish and 7,382 blue catfish cDNA clones were identified as potentially encoding full-length cDNAs. Of this set, a total of 1,169 channel catfish and 933 blue catfish full-length cDNA clones were selected for re-sequencing to provide additional coverage and ensure sequence accuracy. A total of 1,745 unique gene transcripts were identified from the full-length cDNA set, including 1,064 gene transcripts from channel catfish and 681gene transcripts from blue catfish, with 416 transcripts shared between the two closely related species. Full-length sequence characteristics (ortholog conservation, UTR length, Kozak sequence, and conserved motifs) of the channel and blue catfish were examined in detail. Comparison of gene ontology composition between full-length cDNAs and all catfish ESTs revealed that the full-length cDNA set is representative of the gene diversity encoded in the catfish transcriptome. Conclusions: This study describes the first catfish full-length cDNA set constructed from several cDNA libraries. The catfish full-length cDNA sequences, and data gleaned from sequence characteristics analysis, will be a valuable resource fo

    The Chromosomal High-Affinity Binding Sites for the Drosophila Dosage Compensation Complex

    Get PDF
    Dosage compensation in male Drosophila relies on the X chromosome–specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called “high-affinity sites” (HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features

    Regulatory RNAs and chromatin modification in dosage compensation: A continuous path from flies to humans?

    Get PDF
    Chromosomal sex determination is a widely distributed strategy in nature. In the most classic scenario, one sex is characterized by a homologue pair of sex chromosomes, while the other includes two morphologically and functionally distinct gonosomes. In mammalian diploid cells, the female is characterized by the presence of two identical X chromosomes, while the male features an XY pair, with the Y bearing the major genetic determinant of sex, i.e. the SRY gene. In other species, such as the fruitfly, sex is determined by the ratio of autosomes to X chromosomes. Regardless of the exact mechanism, however, all these animals would exhibit a sex-specific gene expression inequality, due to the different number of X chromosomes, a phenomenon inhibited by a series of genetic and epigenetic regulatory events described as "dosage compensation". Since adequate available data is currently restricted to worms, flies and mammals, while for other groups of animals, such as reptiles, fish and birds it is very limited, it is not yet clear whether this is an evolutionary conserved mechanism. However certain striking similarities have already been observed among evolutionary distant species, such as Drosophila melanogaster and Mus musculus. These mainly refer to a) the need for a counting mechanism, to determine the chromosomal content of the cell, i.e. the ratio of autosomes to gonosomes (a process well understood in flies, but still hypothesized in mammals), b) the implication of non-translated, sex-specific, regulatory RNAs (roX and Xist, respectively) as key elements in this process and the location of similar mediators in the Z chromosome of chicken c) the inclusion of a chromatin modification epigenetic final step, which ensures that gene expression remains stably regulated throughout the affected area of the gonosome. This review summarizes these points and proposes a possible role for comparative genetics, as they seem to constitute proof of maintained cell economy (by using the same basic regulatory elements in various different scenarios) throughout numerous centuries of evolutionary history
    corecore