808 research outputs found

    Making visible the invisible through the analysis of acknowledgements in the humanities

    Full text link
    Purpose: Science is subject to a normative structure that includes how the contributions and interactions between scientists are rewarded. Authorship and citations have been the key elements within the reward system of science, whereas acknowledgements, despite being a well-established element in scholarly communication, have not received the same attention. This paper aims to put forward the bearing of acknowledgements in the humanities to bring to the foreground contributions and interactions that, otherwise, would remain invisible through traditional indicators of research performance. Design/methodology/approach: The study provides a comprehensive framework to understanding acknowledgements as part of the reward system with a special focus on its value in the humanities as a reflection of intellectual indebtedness. The distinctive features of research in the humanities are outlined and the role of acknowledgements as a source of contributorship information is reviewed to support these assumptions. Findings: Peer interactive communication is the prevailing support thanked in the acknowledgements of humanities, so the notion of acknowledgements as super-citations can make special sense in this area. Since single-authored papers still predominate as publishing pattern in this domain, the study of acknowledgements might help to understand social interactions and intellectual influences that lie behind a piece of research and are not visible through authorship. Originality/value: Previous works have proposed and explored the prevailing acknowledgement types by domain. This paper focuses on the humanities to show the role of acknowledgements within the reward system and highlight publication patterns and inherent research features which make acknowledgements particularly interesting in the area as reflection of the socio-cognitive structure of research.Comment: 14 page

    Review on the possible tool materials for friction stir welding of steel plates

    Get PDF
    The friction stir welding (FSW) process is mainly used in industrial applications for joining low melting temperature materials such as aluminium and magnesium. FSW has many advantages in comparison with conventional fusion arc welding. Therefore the interest to use this technique for joining steel plates has grown. However such usage is still limited because of the lack of adequate tool materials. This review gives an overview of possible tool materials for FSW of steels focussing on tungsten, tungsten carbide, pcBN and a few ultra-high temperature ceramics

    Differential interferometric phases at high spectral resolution as a sensitive physical diagnostic of circumstellar disks

    Full text link
    Context. The circumstellar disks ejected by many rapidly rotating B stars (so-called Be stars) offer the rare opportunity of studying the structure and dynamics of gaseous disks at high spectral as well as angular resolution. Aims. This paper explores a newly identified effect in spectro-interferometric phase that can be used for probing the inner regions of gaseous edge-on disks on a scale of a few stellar radii. Methods. The origin of this effect (dubbed central quasi-emission phase signature, CQE-PS) lies in the velocity-dependent line absorption of photospheric radiation by the circumstellar disk. At high spectral and marginal interferometric resolution, photocenter displacements between star and isovelocity regions in the Keplerian disk reveal themselves through small interferometric phase shifts. To investigate the diagnostic potential of this effect, a series of models are presented, based on detailed radiative transfer calculations in a viscous decretion disk. Results. Amplitude and detailed shape of the CQE-PS depend sensitively on disk density and size and on the radial distribution of the material with characteristic shapes in differential phase diagrams. In addition, useful lower limits to the angular size of the central stars can be derived even when the system is almost unresolved. Conclusions. The full power of this diagnostic tool can be expected if it can be applied to observations over a full life-cycle of a disk from first ejection through final dispersal, over a full cycle of disk oscillations, or over a full orbital period in a binary system

    Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability

    Get PDF
    The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits\ue2\u80\u99 width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings

    Connectivity Influences on Nonlinear Dynamics in Weakly-Synchronized Networks: Insights from Rössler Systems, Electronic Chaotic Oscillators, Model and Biological Neurons

    Get PDF
    Natural and engineered networks, such as interconnected neurons, ecological and social networks, coupled oscillators, wireless terminals and power loads, are characterized by an appreciable heterogeneity in the local connectivity around each node. For instance, in both elementary structures such as stars and complex graphs having scale-free topology, a minority of elements are linked to the rest of the network disproportionately strongly. While the effect of the arrangement of structural connections on the emergent synchronization pattern has been studied extensively, considerably less is known about its influence on the temporal dynamics unfolding within each node. Here, we present a comprehensive investigation across diverse simulated and experimental systems, encompassing star and complex networks of Rössler systems, coupled hysteresis-based electronic oscillators, microcircuits of leaky integrate-and-fire model neurons, and finally recordings from in-vitro cultures of spontaneously-growing neuronal networks. We systematically consider a range of dynamical measures, including the correlation dimension, nonlinear prediction error, permutation entropy, and other information-theoretical indices. The empirical evidence gathered reveals that under situations of weak synchronization, wherein rather than a collective behavior one observes significantly differentiated dynamics, denser connectivity tends to locally promote the emergence of stronger signatures of nonlinear dynamics. In deterministic systems, transition to chaos and generation of higher-dimensional signals were observed; however, when the coupling is stronger, this relationship may be lost or even inverted. In systems with a strong stochastic component, the generation of more temporally-organized activity could be induced. These observations have many potential implications across diverse fields of basic and applied science, for example, in the design of distributed sensing systems based on wireless coupled oscillators, in network identification and control, as well as in the interpretation of neuroscientific and other dynamical data

    SAMplus: adaptive optics at optical wavelengths for SOAR

    Full text link
    Adaptive Optics (AO) is an innovative technique that substantially improves the optical performance of ground-based telescopes. The SOAR Adaptive Module (SAM) is a laser-assisted AO instrument, designed to compensate ground-layer atmospheric turbulence in near-IR and visible wavelengths over a large Field of View. Here we detail our proposal to upgrade SAM, dubbed SAMplus, that is focused on enhancing its performance in visible wavelengths and increasing the instrument reliability. As an illustration, for a seeing of 0.62 arcsec at 500 nm and a typical turbulence profile, current SAM improves the PSF FWHM to 0.40 arcsec, and with the upgrade we expect to deliver images with a FWHM of ≈0.34\approx0.34 arcsec -- up to 0.23 arcsec FWHM PSF under good seeing conditions. Such capabilities will be fully integrated with the latest SAM instruments, putting SOAR in an unique position as observatory facility.Comment: To appear in Proc. SPIE 10703 (Ground-based and Airborne Instrumentation for Astronomy VII; SPIEastro18

    Family violence against children in the wake of COVID-19 pandemic: A review of current perspectives and risk factors

    Get PDF
    The situation of crisis produced by the Coronavirus (COVID-19) pandemic poses major challenges to societies all over the world. While efforts to contain the virus are vital to protect global health, these same efforts are exposing children and adolescents to an increased risk of family violence. Various criminological theories explain the causes of this new danger. The social isolation required by the measures taken in the different countries, the impact on jobs, the economic instability, high levels of tension and fear of the virus, and new forms of relationships have all increased levels of stress in the most vulnerable families and, therefore, the risk of violence. In addition, mandatory lockdowns imposed to curb the spread of the disease have trapped children in their homes, isolating them from the people and the resources that could help them. In general, the restrictive measures imposed in many countries have not been accompanied by an analysis of the access to the resources needed to reduce this risk. It is necessary to take urgent measures to intervene in these high-risk contexts so that children and adolescents can develop and prosper in a society which is likely to undergo profound changes, but in which the defense of their rights and protection must remain a major priority

    VLTI/PIONIER images the Achernar disk swell

    Full text link
    Context. The mechanism of disk formation around fast-rotating Be stars is not well understood. In particular, it is not clear which mechanisms operate, in addition to fast rotation, to produce the observed variable ejection of matter. The star Achernar is a privileged laboratory to probe these additional mechanisms because it is close, presents B-Be phase variations on timescales ranging from 6 yr to 15 yr, a companion star was discovered around it, and probably presents a polar wind or jet. Aims. Despite all these previous studies, the disk around Achernar was never directly imaged. Therefore we seek to produce an image of the photosphere and close environment of the star. Methods. We used infrared long-baseline interferometry with the PIONIER/VLTI instrument to produce reconstructed images of the photosphere and close environment of the star over four years of observations. To study the disk formation, we compared the observations and reconstructed images to previously computed models of both the stellar photosphere alone (normal B phase) and the star presenting a circumstellar disk (Be phase). Results. The observations taken in 2011 and 2012, during the quiescent phase of Achernar, do not exhibit a disk at the detection limit of the instrument. In 2014, on the other hand, a disk was already formed and our reconstructed image reveals an extended H-band continuum excess flux. Our results from interferometric imaging are also supported by several H-alpha line profiles showing that Achernar started an emission-line phase sometime in the beginning of 2013. The analysis of our reconstructed images shows that the 2014 near-IR flux extends to 1.7 - 2.3 equatorial radii. Our model-independent size estimation of the H-band continuum contribution is compatible with the presence of a circumstellar disk, which is in good agreement with predictions from Be-disk models
    • …
    corecore