10 research outputs found

    The Distal Human myoD Enhancer Sequences Direct Unique Muscle-Specific Patterns of lacZ Expression during Mouse Development

    Get PDF
    AbstractTransgenic mice carrying the bacterial lacZ reporter gene under the control of the regulatory elements of the human myoD gene have been produced. The developmental expression of the myoD reporter transgene in somites, limb buds, visceral arches, and cephalocervical regions was studied in transgenic embryos by β-gal staining. In somites, the spatiotemporal pattern of transgene expression was different from other muscle-specific regulatory and structural genes and revealed that myoD-expressing cells arise in distinct patterns in somites that are dependent on position along the anterior-posterior (AP) body axis (occipital and cervical vs thoracic and more posterior myotomes). Transgene expression did not follow a strict anterior to posterior sequence of activation and therefore was not strictly correlated with somite developmental age. Moreover, the pattern of transgene expression along the dorsal-ventral myotomal axis was dependent on somite position along the anterior-posterior axis. While myoD expression is first detected after the myotome is well-formed, transgene expression in the dorsal and ventral medial lips of the dermatome suggests a function for myoD in the expansion of the myotome. Whole-mount in situ hybridization confirmed that these unique patterns of transgene expression in somites, as well as expression in limb buds, visceral arches, and other myogenic centers, are concordant with the distribution of endogenous myoD transcripts. These results shed new light on the developmental differences between myotomes at different positions along the AP and DV axis and demonstrate a unique axial pattern of somitic myoD expression, suggesting a specific role of myoD in myotome lineage determination and differentiation

    siRNA Targeted to p53 Attenuates Ischemic and Cisplatin-Induced Acute Kidney Injury

    Get PDF
    Proximal tubule cells (PTCs), which are the primary site of kidney injury associated with ischemia or nephrotoxicity, are the site of oligonucleotide reabsorption within the kidney. We exploited this property to test the efficacy of siRNA targeted to p53, a pivotal protein in the apoptotic pathway, to prevent kidney injury. Naked synthetic siRNA to p53 injected intravenously 4 h after ischemic injury maximally protected both PTCs and kidney function. PTCs were the primary site for siRNA uptake within the kidney and body. Following glomerular filtration, endocytic uptake of Cy3-siRNA by PTCs was rapid and extensive, and significantly reduced ischemia-induced p53 upregulation. The duration of the siRNA effect in PTCs was 24 to 48 h, determined by levels of p53 mRNA and protein expression. Both Cy3 fluorescence and in situ hybridization of siRNA corroborated a short t½ for siRNA. The extent of renoprotection, decrease in cellular p53 and attenuation of p53-mediated apoptosis by siRNA were dose- and time-dependent. Analysis of renal histology and apoptosis revealed improved injury scores in both cortical and corticomedullary regions. siRNA to p53 was also effective in a model of cisplatin-induced kidney injury. Taken together, these data indicate that rapid delivery of siRNA to proximal tubule cells follows intravenous administration. Targeting siRNA to p53 leads to a dose-dependent attenuation of apoptotic signaling, suggesting potential therapeutic benefit for ischemic and nephrotoxic kidney injury

    Identification of a Novel Hypoxia-Inducible Factor 1-Responsive Gene, RTP801, Involved in Apoptosis

    No full text
    Hypoxia is an important factor that elicits numerous physiological and pathological responses. One of the major gene expression programs triggered by hypoxia is mediated through hypoxia-responsive transcription factor hypoxia-inducible factor 1 (HIF-1). Here, we report the identification and cloning of a novel HIF-1-responsive gene, designated RTP801. Its strong up-regulation by hypoxia was detected both in vitro and in vivo in an animal model of ischemic stroke. When induced from a tetracycline-repressible promoter, RTP801 protected MCF7 and PC12 cells from hypoxia in glucose-free medium and from H(2)O(2)-triggered apoptosis via a dramatic reduction in the generation of reactive oxygen species. However, expression of RTP801 appeared toxic for nondividing neuron-like PC12 cells and increased their sensitivity to ischemic injury and oxidative stress. Liposomal delivery of RTP801 cDNA to mouse lungs also resulted in massive cell death. Thus, the biological effect of RTP801 overexpression depends on the cell context and may be either protecting or detrimental for cells under conditions of oxidative or ischemic stresses. Altogether, the data suggest a complex type of involvement of RTP801 in the pathogenesis of ischemic diseases

    Differential DNA methylation of vocal and facial anatomy genes in modern humans

    Get PDF
    Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract

    Differential DNA methylation of vocal and facial anatomy genes in modern humans

    No full text
    Altres ajuts: Obra Social "La Caixa" i CERCA Programme/Generalitat de CatalunyaChanges in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract

    Internal control through the lens of institutional work: a systematic literature review

    No full text

    Synthesis and Reactions of Diorganyl Tellurides

    No full text
    corecore