355 research outputs found

    Core and valence electronic states studied with x-ray photoelectron spectroscopy

    Full text link

    High energy photoelectron diffraction: model calculations and future possibilities

    Get PDF
    We discuss the theoretical modelling of x-ray photoelectron diffraction (XPD) with hard x-ray excitation at up to 20 keV, using the dynamical theory of electron diffraction to illustrate the characteristic aspects of diffraction patterns resulting from such localized emission sources in a multi-layer crystal. We show via dynamical calculations for diamond, Si, and Fe that the dynamical theory well predicts available current data for lower energies around 1 keV, and that the patterns for energies above about 1 keV are dominated by Kikuchi bands which are created by the dynamical scattering of electrons from lattice planes. The origin of the fine structure in such bands is discussed from the point of view of atomic positions in the unit cell. The profiles and positions of the element-specific photoelectron Kikuchi bands are found to be sensitive to lattice distortions (e.g. a 1% tetragonal distortion) and the position of impurities or dopants with respect to lattice sites. We also compare the dynamical calculations to results from a cluster model that is more often used to describe lower-energy XPD. We conclude that hard XPD (HXPD) should be capable of providing unique bulk-sensitive structural information for a wide variety of complex materials in future experiments.Comment: 29 pages, 13 figure

    Interface Engineering to Create a Strong Spin Filter Contact to Silicon

    Get PDF
    Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (ii) an in situin\:situ hydrogen-Si (001)(001) passivation and (iiii) the application of oxygen-protective Eu monolayers --- without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001)(001) in order to create a strong spin filter contact to silicon.Comment: 11 pages of scientific paper, 10 high-resolution color figures. Supplemental information on the thermodynamic problem available (PDF). High-resolution abstract graphic available (PNG). Original research (2016

    Temperature-Dependent X-Ray Absorption Spectroscopy of Colossal Magnetoresistive Perovskites

    Full text link
    The temperature dependence of the O K-edge pre-edge structure in the x-ray absorption spectra of the perovskites La(1-x)A(x)MnO(3), (A = Ca, Sr; x = 0.3, 0.4) reveals a correlation between the disappearance of the splitting in the pre-edge region and the presence of Jahn-Teller distortions. The different magnitudes of the distortions for different compounds is proposed to explain some dissimilarity in the line shape of the spectra taken above the Curie temperature.Comment: To appear in Phys. Rev. B, 5 pages, 3 figure

    Direct Observation of High-Temperature Polaronic Behavior In Colossal Magnetoresistive Manganites

    Full text link
    The temperature dependence of the electronic and atomic structure of the colossal magnetoresistive oxides La1−xSrxMnO3La_{1-x}Sr_{x}MnO_{3} (x = 0.3, 0.4) has been studied using core and valence level photoemission, x-ray absorption and emission, and extended x-ray absorption fine structure spectroscopy. A dramatic and reversible change of the electronic structure is observed on crossing the Curie temperature, including charge localization and spin moment increase of Mn, together with Jahn-Teller distortions, both signatures of polaron formation. Our data are also consistent with a phase-separation scenario.Comment: 5 pages, 4 figures, revte

    Multiatom resonant photoemission: Theory and systematics

    Get PDF
    A first-principles calculation of the recently discovered interatomic multiatom resonant photoemission (MARPE) effect is presented. In this phenomenon, core photoelectron intensities are enhanced when the photon energy is tuned to a core-level absorption edge of nonidentical neighboring atoms, thus enabling direct determination of near-neighbor atomic identities. Both the multiatom character of MARPE and retardation effects in the photon and electron interactions in the resonant channel are shown to be crucial. Measured peak-intensity enhancements of 40% in MnO and spectral shapes similar to the corresponding x-ray absorption profiles are well reproduced by this theory.This work was supported by the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098, the University of the Basque Country, and the Spanish Ministerio de Educación y Cultura (Fulbright Grant No. FU-98-22726216).Peer reviewe

    Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films

    Full text link
    X-ray photoelectron diffraction is used to directly probe the intra-cell polar atomic distortion and tetragonality associated with ferroelectricity in ultrathin epitaxial PbTiO3 films. Our measurements, combined with ab-initio calculations, unambiguously demonstrate non-centro-symmetry in films a few unit cells thick, imply that films as thin as 3 unit cells still preserve a ferroelectric polar distortion, and also show that there is no thick paraelectric dead layer at the surface
    • …
    corecore