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Abstract. We discuss the theoretical modeling of x-ray photoelectron
diffraction (XPD) with hard x-ray excitation at up to 20 keV, using the
dynamical theory of electron diffraction to illustrate the characteristic aspects
of the diffraction patterns resulting from such localized emission sources in a
multilayer crystal. We show via dynamical calculations for diamond, Si and
Fe that the dynamical theory predicts well the available current data for lower
energies around 1 keV, and that the patterns for energies above about 1 keV are
dominated by Kikuchi bands, which are created by the dynamical scattering
of electrons from lattice planes. The origin of the fine structure in such bands
is discussed from the point of view of atomic positions in the unit cell. The
profiles and positions of the element-specific photoelectron Kikuchi bands are
found to be sensitive to lattice distortions (e.g. a 1% tetragonal distortion) and
the position of impurities or dopants with respect to lattice sites. We also compare
the dynamical calculations with results from a cluster model that is more often
used to describe lower energy XPD. We conclude that hard XPD (HXPD) should
be capable of providing unique bulk-sensitive structural information for a wide
variety of complex materials in future experiments.
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1. Introduction

The method of x-ray photoelectron diffraction (XPD) is a powerful tool for the analysis
of surface atomic structure, including adsorbates and overlayer growth. By measuring the
angular intensity of photoelectrons excited by x-rays and comparing the experimental data with
simulations, element-specific information on the surface crystallography of the sample can be
gained [1]. The typical electron kinetic energies in such experiments range from about 100 to
1500 eV. Recently, however, an increasing number of photoemission studies have been aimed
at developing and applying hard x-ray photoelectron spectroscopy (HAXPES or HXPS) [2], in
which energies may go up to 5–20 keV. However, no photoelectron diffraction measurements
have as yet been carried out at these energies, although the extension of XPD to the hard
x-ray regime is expected to open up additional analytical possibilities in accessing truly bulk
properties of new materials [3]. The aim of this paper is to assess some of these possibilities by
means of accurate model calculations.

In anticipation of the experimental realizations of such hard XPD (HXPD) experiments,
it also seems clear that a modification of the theoretical approach will be necessary due to
the much higher energies involved. The method most often used currently includes single
and multiple scattering of photoelectrons within a finite cluster of atoms and allows the
description of arbitrary surface structures which can possess short-range as well as long-range
order. Such cluster calculations have been used successfully in a large number of experimental
investigations [4]–[8], and in one case, even used to theoretically assess the emission from an
adsorbate molecule for energies from 0.5 to 10 keV [9]. However, in dealing with multilayer
substrate emission, it has been realized for some time that, for energies of about 1 keV or
more, the XPD patterns begin to show evidence of long-range Bragg-related effects that are
known as Kikuchi bands [10, 11]. Such bands are well known, and in connection with a given
low-index set of crystal planes (hkl) they are associated with enhanced intensity modulations
over an angular width of twice the first-order Bragg angle of these planes: sin θBragg = λe/2dhkl ,
where λe is the electron wavelength (∝ 1/

√
Ekin) and dhkl is the interplanar spacing. Cluster

simulations have in fact been successful in reproducing the formation of Kikuchi bands in
multilayer substrate XPD measured with high angular resolution [12, 13]. In these studies,
it was shown that these bands become more pronounced as the number of scatterers in a
cluster becomes larger. Such cluster calculations have been made more time-efficient and
accurate through different approximations for the spherical-wave scattering that is the natural
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starting point for photoelectron diffraction, since the initial wave is emitted from a localized
core level [14]–[17]. However, because all the cluster methods solve the scattering problem
essentially in a spherical-wave expansion of finite order, they become computationally more and
more demanding at higher energies and for clusters with larger and larger numbers of atoms.
For example, for scattering of 10 keV electrons from a representative atomic potential of 1 Å
radius, the number of scattering phase shifts has to be increased to lmax ≈ krMT = 100, where k
is the electron wavevector and rMT is the muffin-tin radius of the atom. This poses considerable
calculational difficulties as the photoelectron kinetic energies become larger than approximately
1 keV. Beyond this, the cluster sizes needed at these energies also become larger due to the
greater inelastic mean free paths, which roughly go as E0.75

kin and can be as large as 5–15 nm for
10 keV energy. The resulting clusters can thus easily contain several thousands of atoms, for
example about 10 000 atoms in 40 atomic layers were needed in cluster calculations on Cu at
about 1 keV to be able to see the onset of Kikuchi band behavior [11]. This can make multiple
scattering cluster calculations at high energies prohibitively time-consuming, as we have in fact
verified as part of this study.

In order to frame the modeling in a manner more natural for multilayer emission of such
high-energy photoelectrons, we note that they sample not only the immediate surface layers
where the bulk symmetry is broken, but also the diffraction patterns are formed from thicknesses
of the order of the inelastic mean free paths, which can be 5–15 nm in the hard x-ray regime.
On these length scales, the properties of the uppermost surface layers play a lesser role relative
to the increased contributions of the bulk crystal. In this case, photoelectron diffraction can be
sufficiently well described by a theory that explicitly exploits the three-dimensional translational
symmetry of the crystal scattering potential, with appropriate matching via suitable boundary
conditions to the photoelectron wavefunction outside the surface.

In figure 1, we show a schematic comparison of both these theoretical models of electron
diffraction at surfaces: the cluster picture (left) and the picture of reflecting lattice planes in a
long-range periodic structure (right). While the cluster picture has the advantage of being able
to in principle describe an arbitrary surface structure, as is indicated by the contraction of the
first layer and a step edge, the Kikuchi bands are most easily explained by assuming the lattice
planes of the periodic crystal as the fundamental scattering entities. For perfect crystals, both
approaches are equivalent when taken to infinite order.

It is interesting to note that already the earliest observations of photoelectron diffraction
on single crystal surfaces in the about 1 keV regime have interpreted the angular distributions
as being caused by reflection of the photoelectrons on lattice planes of the three-dimensionally
periodic bulk crystal [18, 19]. In this view, XPD is a special case of emission from point-source
core levels inside a crystal, for which a general description can be obtained via a dynamical
many-beam theory involving a plane wave expansion of the diffracted electron waves [20]. For
example, a simple two-beam dynamical theory was applied to explain the azimuthal variations
of photoelectron intensities for single crystal copper [10]. Using this theory, the intensity
variations could be reproduced by the summation of a number of Kikuchi bands. These bands
show increased intensity in a region having a width that is about twice the Bragg angle of the
corresponding reflecting lattice plane, as qualitatively illustrated on the right in figure 1.

Making use of this view of an effectively three-dimensional crystal that is diffracting
the photoelectrons, one of the authors has previously been able to show that the Bloch
wave approach of the dynamical theory of electron diffraction is able to provide a practical
framework for the simulation of XPD patterns at high kinetic energies [21]. It was shown
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Figure 1. Electron diffraction from localized sources (blue): left: scattering
atoms in a finite cluster around the source and no restrictions on symmetry; right:
scattering by lattice planes of a long-range periodic structure.

that this theory can not only explain the formation of Kikuchi bands but also reproduces
features like forward-scattering directions and ring-shaped interference maxima around these
directions. Such features can also be explained in the intuitive forward scattering picture of
cluster calculations, as has been shown by direct comparison with single scattering cluster (SSC)
simulations [21]. These rings are the long-range-order analogues of what have been termed first-
order diffraction fringes in XPD studies of small molecules and chains [1]. The advantage of
dynamical diffraction theory for substrate XPD lies in the fact that the lattice planes that cause
the Kikuchi lines are already an essential building block of the theory and do not emerge as a
secondary phenomenon from a huge number of periodically arranged individual scatterers. In
this way, the increasing number of atoms that is involved in the diffraction process does not
necessarily imply a corresponding increase in the complexity of the interpretation of the results.
Instead, as is well known, the diffraction process in a periodic medium is more conveniently
calculated via a reciprocal space method.

The purpose of this paper is to extend many-beam dynamical simulations to XPD at
hard x-ray energies, to assess what should be observed in experiment, and to point out some
promising future applications of HXPD. We use primarily the examples of diamond C(111)
and Si(111), for which there exist published experimental data at about 1 keV, but also show
some calculations for Fe. After showing that we can reproduce these experimental data for C
and Si with our approach, we then increase the kinetic energy up to 20 keV and we analyze the
qualitative and quantitative features of photoelectron diffraction at these energies. We also assess
the sensitivity of HXPD to two types of structural variation: a tetragonal lattice distortion and
emission from an impurity or dopant atom sitting on a lattice or interstitial site. For comparison,
we also show some results obtained using a cluster model [17]. The experimental and theoretical
data presented here should thus provide an excellent roadmap of the characteristic features in
the patterns to be expected in future hard XPD experiments.
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2. Theory

Although the full details of our long-range-order dynamical approach have been presented
elsewhere [21], we introduce the essentials briefly here. For the description of the photoelectron
diffraction process, we assume in the first approximation that the electrons originate
isotropically from point sources which are periodically arranged inside a crystal. Thus,
we neglect any anisotropy associated with the photoelectric cross section. By making this
approximation, we obtain conclusions on the general features of the photoelectron diffraction
process at high energies, independent of a specific experimental geometry and surface under
consideration. Future improvements going beyond this approximation that would be necessary
for a quantitative description of specific experimental results will be discussed below.

The outgoing photoelectrons are scattered by the crystal and detected as a plane wave at the
detector. By using the reciprocity principle, one realizes that the diffraction from a point source
inside a crystal is equivalent to the problem of an incoming electron beam that is diffracted
by the crystal and results in a certain electron intensity at the emitting atoms positions [20].
The diffraction of an electron beam impinging on a sample is of obvious importance in various
methods of scanning and transmission electron microscopy, which permits use of the theoretical
approaches that are applied in these methods. This close analogy to incoming beam diffraction
effects allowed us to use the existing Bloch wave algorithms developed for high-energy electron
diffraction [22, 23] for this application to substrate XPD. We will only give a short summary of
the general approach we apply. More details can be found in Winkelmann et al [21, 24].

What we need to describe is the relative intensity distribution of photoelectrons in the
detected directions. The corresponding range of outgoing wavevectors is denoted by kα

out,
where α labels the outgoing direction in a suitably chosen coordinate system. The high-
energy wavefunction inside the crystal is described as a superposition of the Bloch waves with
wavevectors k( j):

9(r) =

∑
j

c j exp(ik( j)
· r)

∑
g

C ( j)
g exp(ig · r). (1)

For a specific kα
out outside the crystal, we can determine the electron wavevector K inside the

crystal, which is used to express k( j) as k( j)
= K + λ( j)n, where n is a unit vector normal to the

surface. Starting from the Schrödinger equation, one can then set up an eigenvalue problem [23],
which gives the eigenvalues λ( j) and eigenvectors with elements C ( j)

g . The scattering potential
is described in terms of its Fourier coefficients, with a constant real part to represent the surface
or inner potential V0r and a constant imaginary part to represent the electron inelastic mean free
path 3e through eV0i = −

√
h̄2 Ekin/2me/3e.

The surface is introduced by boundary conditions at a specified t = 0 plane, which is
taken as the border between the crystal and the vacuum containing an incident plane wave
from the detector. The requirements of continuity of the wavefunction in both half spaces
then determine the coefficients c j in (1). The depth is measured from the t = 0 plane. After
this, the wavefunction (1) is known and can be used to calculate the probability density
inside the crystal for a plane wave moving in the kα

out direction. The modulation of this
probability at the photoemitter positions describes the diffraction by the crystal. To couple
the photoemitters to the Bloch wave field, we need the corresponding matrix elements of the
interaction operator VI, which describes the photoexcitation due to the vector potential A(r) of
the incident radiation [25], VI ∼ A(r) · p, with the momentum operator p. The matrix element
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needs to be determined between an atomic core level state |L〉 characterized by quantum
numbers L = (l, m, . . .) and the plane waves |K, g〉 of the wavefunction (1).

In a general way, we can write the dynamical diffraction part of the cross section of
localized scattering processes as [26]:

IDYN ∝

∑
i, j

B i j(t)
∑
g,h

C (i)
g C ( j)∗

h µg,h (2)

with a depth integrated interference term B i j(t) of the Bloch waves i and j :

B i j(t) = ci c
∗

j

exp[i(λi
− λ j∗)t] − 1

i(λi − λ j∗)t
. (3)

Here, the terms µg,h contain products of the matrix elements of VI using summation indices g
and h for the plane wave expansion. For this work, we will assume that photoemission takes
places isotropically from the atomic positions rn of the emitters, which are described via delta
functions δ(r − rn) broadened by thermal vibration according to a Debye–Waller factor. This
leads to coefficients of the form µg,h = exp(−Mn

g−h)exp[i(g − h) · rn] and results in the cross
section formula that we have used in our previous simulations for quasi-elastic backscattering
of electrons and XPD [21, 24]:

IDYN ∝

∑
n,i j

B i j(t)
∑
g,h

C (i)
g C ( j)∗

h exp(−Mn
g−h)exp[i(g − h) · rn]. (4)

Our assumption of simple isotropic photoelectron emission as compared with a more
correct description of the ionization process is made to gain insight into the fundamental
processes of dynamical diffraction by lattice planes in photoelectron diffraction. This
assumption also leads to results that are directly applicable to the relative changes in intensity
seen for emission from a given orbital for the often occurring case in which the photon–electron
geometry, and thus the differential photoelectric cross section, are fixed and the sample is
rotated in polar and azimuthal angles so as to scan the emission direction in principle over
the full hemisphere of emission, as is shown e.g. in figure 2. For a future, more quantitative
description of specific experiments, including intensity ratios between different core levels, this
theoretical description can be extended to include the details of the photoemission process. This
concerns especially the matrix-element effects of the l ± 1 channels at the ionization. These
can be incorporated into the theory by the use of generalized potentials µg,h, which contain the
necessary dipole matrix elements for inner shell atomic excitation [27]–[29]. In principle, this
simply amounts to a plane wave expansion of the photoexcited states described by the l ± 1
quantum numbers in the atomic spherical wave description [30].

Another approximation used in our approach concerns the neglect of backscattering, which
should be valid at high energies for which electron–atom scattering is known to be strongly
peaked in the forward direction. Inclusion of backscattering in the theory results in eigenvalue
problems of size 2N × 2N as compared with N × N when neglecting backscattering, where
N is the number of included Fourier coefficients of the crystal potential [31]. We expect that
backscattering will have a higher effect at lower energies and along directions with strong
multiple scattering, e.g. zone axis directions.
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Figure 2. (a) Experimental data from Osterwalder et al [12, 32] and (b) simulated
photoelectron diffraction from diamond C(111) at a kinetic energy of 964 eV.
In the simulation, 97 Fourier coefficients (‘reflecting lattice planes’) have been
taken into account. (c) Multiple scattering simulation using EDAC (see section 4
for discussion).

3. Results

In this section, we will first show that the dynamical electron diffraction approach is able to
reproduce published experimental data for XPD at kinetic energies near 1 keV from diamond
C(111) and from silicon Si(111) with very good agreement. We then calculate the corresponding
XPD patterns at kinetic energies ranging from 0.5 to 20 keV for comparison.

3.1. XPD from diamond and silicon near 1 keV

In figure 2(a), we show the experimental data of Osterwalder et al [12, 32] for C 1s
photoemission in diamond C(111) observed at a kinetic energy of 964 eV. In figure 2(b), the
result of an XPD simulation using dynamical electron diffraction theory for point sources
in a crystal is shown. We assumed a lattice constant of 3.57 Å and isotropic emission of
photoelectrons from the C atoms. The 97 strongest Fourier components of the lattice potential
have been taken into account [21]. These correspond to reciprocal lattice vectors (h,k,l) in the
complete three-dimensional reciprocal space and they are associated with the various reflecting
lattice planes, including possible higher order reflections. The calculation has been averaged
over a sufficient angular range to account for the limited experimental resolution. Furthermore,
we show results of a multiple scattering cluster simulation in figure 2(c), which will be discussed
in section 4.

There is excellent agreement between the experimental data and the dynamical simulation
in figure 2. In particular, the Kikuchi-band structure is correctly reproduced and permits
interpreting weak features in the experimental data like the decrease of intensity in the center of
the marked forward-scattering directions in figure 2(a). This is obviously due to a crossing of
dark Kikuchi lines and leads to the well-known volcano shape in XPD polar plots. As we have
already noted, it is likely that probably much more computational effort would be needed in a
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Figure 3. (a) Experimental data from Osterwalder et al [12, 32] and (b) simulated
photoelectron diffraction photoelectron diffraction from Si(111) at a kinetic
energy of 1154 eV. In the simulation, 127 Fourier coefficients have been taken
into account.

cluster approach to reach this level of agreement, but we return later to show some calculations
using this approach for completeness. While a simple geometrical analysis of Kikuchi line
positions will verify the fact that there are indeed lines crossing in this region at this energy,
this observation does not give reasons why they should be dark. We really need to consider the
dynamical diffraction process to account correctly for the observed intensities.

A similar degree of agreement can be seen for emission from silicon Si(111) at 1154 eV
shown in figure 3, although the larger lattice constant of 5.43 Å means the features are inherently
narrower, and it is a challenge for the experimental data to show all the fine structure present in
theory. For the theoretical pattern, 127 Fourier components have been included. In these results,
both for experiment and theory, we recognize the appearance of ring structures around low-
index emission directions, which can be interpreted as first order interference maxima around
the corresponding central forward-scattering direction [1]. It has been shown before that these
features can be translated into the language of high-energy electron diffraction, where they are
named ‘higher order Laue zone’ (HOLZ) rings [21]. In both pictures, these features consist
of intensity which is scattered away from the forward-scattering direction. The diameter of
the ring is determined by the separation of scatterers along the forward-scattering direction.
This fact can be exploited to obtain holographic-type information from these rings [32]–[34].
This line of thought leads to the conclusion that if these rings are created by electrons that are
scattered away from their initial direction in the forward-scattering peak, then there has to be
a reduction of intensity near this particular initial direction. In the picture of scattering lattice
planes: a Kikuchi line corresponding to a reciprocal lattice vector g is crossing the forward
scattering peak, and there must be another Kikuchi line that corresponds to −g forming part
of the envelope of the outward ring. By the diffraction process, intensity is transferred from
the initial forward-scattering direction (related to g) to the outer ring formed as the envelope
of similar −g reflections. While the outer ring lines are high in intensity, the initial forward
scattering lines are dark. This can be actually seen in the center of the rings marked in the
simulated Si pattern of figure 3. We will demonstrate below that a rather complicated fine
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structure of dark lines exists at high kinetic energies and that this is very sensitive to the crystal
geometry. From this fine structure, valuable information should be obtainable in a way that is
qualitatively different from the low-energy regime.

Summarizing this section, within our simple assumption of isotropic emission of
photoelectrons, the one-to-one agreement of features in the simulation and experiment is most
encouraging. This permits making semi-quantitative estimates concerning the effects that will
be seen at even higher energies.

3.2. Simulations of high-energy XPD

3.2.1. Energy-dependent full-hemispherical patterns. Having convinced ourselves that our
calculational approach is able to describe the XPD patterns of diamond and silicon at around
1 keV kinetic energy, we will now show the results of calculations at systematically higher
energies up to 20 keV. In figures 4 and 5, we show calculations for the same two cases, C(111)
and Si(111), respectively, starting from 500 eV and assuming perfect angular resolution of the
electron analyzer. The energy values are spaced in such a way as to see on which energy scales
there are significant changes.

At the lowest energies, we see a relatively rapid variation of the XPD patterns with energy
e.g. from 0.5 keV to 1 keV to 2 keV. The appearance of very clear Kikuchi lines at 1 keV can
be noticed, while at lower energies the larger Bragg angles lead to features of correspondingly
larger angular extension for which the Kikuchi band character of the patterns is more difficult
to discern. Still, a network of relatively sharp and dark Kikuchi lines remains.

With increasing energy, the geometrical pattern of narrowing Kikuchi bands entirely
dominates the character of the pattern. This is because the angular range on which intensity
changes can happen due to diffraction is roughly determined by the size of the Bragg angles.
These decrease with increasing energy, so that the intensity variations due to the multiple
(dynamical) scattering occur in a more and more limited region around the projected lattice
planes in the patterns. Correspondingly, the crystallographic symmetry of the crystal lattice
planes becomes the defining factor of the pattern structure. At the same time, the patterns
vary less and less as a function of energy due to the energy dependence of the Bragg angle
θ : sin θ ∝ 1/

√
E for a given reflection g.

While we can be very confident that the high-energy patterns starting from 1 keV give a
realistic estimation of the XPD data to be expected, we have to stress that the 0.5 keV patterns
can be taken only for qualitative comparison. Due to the approximations of our theoretical
approach, it is expected to be increasingly unreliable for energies that are considerably below
1 keV in the case of weaker-scattering low-Z materials like C and Si. At these energies, a cluster
approach is probably more suitable.

3.2.2. Simple interpretation of the photoelectron diffraction process at high energies. We see
from the simulation that the photoelectron diffraction patterns become dominantly characterized
by a network of Kikuchi bands as the energy is increased. These bands contain at their center
a projected lattice plane and in figures 2–5 they appear with increased intensity in the middle
of the band bordered by two lines of decreased intensity near the Bragg angle. However, it is
also possible to have Kikuchi bands that show an inverted contrast with decreased intensity
in the middle of the band bordered by higher intensity lines. This second case is discussed
below, see sections 3.2.3.3 and 3.2.3.4 associated with figures 10 and 11. In the cluster picture,
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Figure 4. Simulated photoelectron diffraction patterns from diamond C(111) at
the kinetic energies indicated in keV. The circular areas correspond to the whole
hemisphere above the sample in stereographic projection. The same parameters
as in figure 2 have been used.

it is not straightforward to explain these different intensity distributions. For a periodic crystal,
by contrast, the mechanism that leads to the intensity distribution in a Kikuchi band can be
visualized and interpreted in a very direct way.

In the photoelectron diffraction Kikuchi pattern, we have directions of higher and lower
intensity. This results from the fact that the photoelectrons, which are created at localized
positions within the unit cell, have a different probability to couple to the plane wave that moves
in vacuum in the detection direction. In the diffraction pattern, we sense the modulation of
this coupling with changing detection direction. We will see in the following that for changing
detection directions, different locations in the unit cell will couple with different efficiencies to
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Figure 5. Simulated photoelectron diffraction patterns from silicon Si(111) at
the kinetic energies indicated in keV. The circular areas correspond to the whole
hemisphere above the sample in stereographic projection. The same parameters
as in figure 3 have been used, with the mean free path adjusted with energy.

the outgoing plane wave. Because the sources of photoelectrons are at fixed positions, this leads
to the effect that only at certain detection angles is the diffraction process able to couple the
photoemitted electrons with high probability into the outgoing wave. At the positions of dark
Kikuchi lines, the photoelectrons would have to originate from positions between the emitter
atoms, a condition that is obviously impossible to fulfill. Alternatively, one can think about
this process by using the reciprocity principle and looking at the probability density in the unit
cell for plane waves coming from the detection directions. If this probability density is high
at the photoemitters, a high photoelectron intensity is observed, and if it is high between the
photoemitters, a low intensity is observed.

New Journal of Physics 10 (2008) 113002 (http://www.njp.org/)

http://www.njp.org/


12

Figure 6. Top middle panel: simplified nine-beam Kikuchi pattern for an Fe
bcc lattice at 15 keV kinetic energy for an angular range of ±15◦ from the
[001] surface normal. The areas marked by colored squares and letters a–e
in the Kikuchi pattern each correspond to a specific detection direction of
either high or low intensity. The other panels then show the (x, y) probability
density distribution in the surface plane corresponding to (a)–(e) for 3 × 3
unit cells averaged along the z-axis [001] (white = high probability of ending
up in the plane wave to the detection direction and black = low probability).
The photoelectrons are created via localized excitations at the atomic positions
(colored circles) and are diffracted into the detection directions with an intensity
proportional to the overlap with the probability density of the diffraction process.
The central lower pattern ((e), green border) corresponds to the forward-
scattering direction of the surface normal and shows how the symmetry of the
lattice can confine the electrons to a channel along the zone-axis direction. The
results in the other panels (a)–(d) explain clearly the high or low level of intensity
along the associated directions.

These qualitative considerations are made visible by simulations in figure 6 for 15 keV
emission from an Fe bcc lattice. In the upper middle panel of figure 6, a calculated model
Kikuchi pattern for electrons emitted from bcc Fe(001) at 15 keV is shown. This is a simplified
Kikuchi pattern, taking into account only eight reflecting lattice planes of the {200} and {110}
family which are oriented perpendicular to the surface plane. These lattice planes determine the
four crossing Kikuchi bands in the pattern, each corresponding to a pair of reciprocal lattice
vectors g and −g. In the Kikuchi pattern we have marked some specific detection directions
corresponding to the middle and the border of Kikuchi bands. In the other panels of figure 6,
we then show how the probability density for an incoming plane wave from a specific detection
direction is distributed inside the unit cells. We view the crystal along the direction of the [001]
surface normal, and since the diffracting lattice planes are oriented perpendicular to the surface,
we average the probability density along the z-axis. The positions of the atoms are marked by
circles, and the small atoms are centered in the bcc unit cell.
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In the unit cell panels of figure 6, we can immediately see how the crystal symmetry
is reflected in the probability density distributions in accordance with the orientation of the
reflecting lattice planes. In the upper and lower left panels, we see that the photoelectron
intensity is high at the Kikuchi band position marked by the blue solid square (b), because
the probability density of diffraction into the detection direction is also high at the positions of
the emitting atoms. At the position of the dark Kikuchi line, marked by the red solid square
(a), we see that the probability density is concentrated between the photoemitters, so that it is
more unlikely for photoelectrons to be diffracted in the direction of the red square, which is then
manifested by the lower photoelectron intensity. The same reasoning holds for the other lattice
planes, e.g. the directions marked by the dashed squares (c and d) shown on the right of figure 6,
where we see that the variations in the probability density conform to the lattice symmetry by
fitting into the space between or along the atomic positions (e.g. parallel to the (100) planes in
the right part, or parallel to the (110) planes in the left part of figure 6).

More complicated intensity distributions arise near the directions where two or more lattice
planes cross. As an example we show the forward-scattering direction along the [001] surface
normal in the panel with the green border. We see that the perfectly symmetric arrangement of
the (100) and (110) lattice planes considered confines the probability density along the atom
columns, which corresponds to electrons channeling along the atomic rows.

In the general case, the scattering lattice planes can be arbitrarily oriented (e.g. tilted with
respect to the surface plane), and one would have to look at the three-dimensional probability
density within the unit cell, without averaging along z. While this certainly would give a more
realistic picture, the basic mechanism has already been completely conveyed by the simplified
pattern of figure 6.

In summary, we have supplied a visual interpretation of the relative variation of the
photoelectron diffraction intensities in Kikuchi features by plotting how the probability density
of an incoming plane wave is diffracted to different parts of the crystal unit cell and how it
overlaps with the photoemitters to varying degrees.

3.2.3. Experimental implications and possible applications. Based on the above simulations,
we consider some implications for future HXPD experiments. First of all, this concerns the
angular width of the features to be observed and the necessary angular resolution.

3.2.3.1. Angular resolution. In figure 7, we compare two simulated HXPD patterns of C(111),
which are blurred according to an angular resolution of ±1◦ (comparable with resolutions used
in existing XPD experiments). One immediately notices the strongly reduced angular range
over which the variations occur at 10 keV photoelectron energy. To quantify this further, we
show in figure 8 an azimuthal scan over the regions indicated by dotted lines in figure 7 at
energies of 1, 2, 5 and 10 keV. The 10 keV peak is only about one-third of the width of the
1 keV peak, which is in agreement with an estimation from Bragg’s law, which would give a
value of 1/

√
10 = 0.32 for the change in sin θ . We also notice that the peak intensity relative to

the Kikuchi band minimum is reduced by less than 10% when going from 1 to 10 keV, which
indicates that such effects should be readily measurable. However, a spectrometer using a larger
angular averaging (lower angular resolution) would necessarily selectively reduce the peak-to-
background ratios in the HXPD features due to their smaller angular widths. We also note that
figures 4 and 5 suggest a possible tradeoff between the angular resolution necessary to make
use of such a structure and the energy. That is, it may be useful to work at somewhat lower
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1 10

Figure 7. Direct comparison of simulated photoelectron diffraction patterns from
diamond C(111) at 1 keV (left) and at 10 keV (right) with an angular resolution
similar to the experimental pattern in figure 2.

Figure 8. Calculated azimuthal plots for C(111) at various energies near the
forward scattering peak at a polar angle of 35◦. The angular range corresponds
to the dotted lines shown in figure 7. An angular resolution of ±1◦ has been
assumed.

energies in the 2–5 keV range in order to better match the size of the Kikuchi band structure to
the angular resolution of the spectrometer.

As we have already remarked above, the 1 keV peak in the azimuthal plot shows a well-
known volcano shape, whose origin can be interpreted by our simulation in a rather simple way
as being due to a crossing of dark Kikuchi lines (see the discussion of the simulated C(111) data
in figure 2).

3.2.3.2. Sensitivity to lattice distortions: tetragonal example. We have demonstrated above
that the high-energy XPD patterns are dominated by the crystallographic symmetries. The
angular scales on which relevant changes are visible are considerably reduced. This also means
that it might not be necessarily useful in all cases to measure large angular ranges at these
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Figure 9. Calculated photoelectron intensity ±5◦ away from the surface normal
of Si(001) at 10 keV showing a fine structure which is very sensitive to a possible
tetragonal distortion. The left panel corresponds to the cubic Si unit cell; for the
other panels, the unit cell has been compressed parallel to the surface normal
along the c-axis by 1% (middle) and 2% (right). Changes are clearly noticeable
at 1% distortion.

high energies. A different approach at high energies would be to measure relatively confined
angular ranges of the diffraction pattern with the highest angular resolution, as might be
provided in the future by further development of special types of display analyzers [35, 36]. In
fact, contemporary hemispherical electrostatic analyzers that are used for valence-band angle-
resolved photoemission (ARPES) can already achieve angular resolutions in the 0.1◦ range over
an angular interval of ±10–20◦ that would span the features shown in figure 9. In the following,
we will show that useful structural information should be obtainable by measuring the details
of the diffraction pattern in a region near a forward scattering direction (zone axis).

An important problem for which this approach might be useful is the growth of epitaxial
thin films on a flat single crystal and their possible tetragonal distortion. In XPD, tetragonal
distortions can be sensed by the change in the direction of forward scattering peaks. This
approach of course remains valid at high energies. However, to show that HXPD could give
important results on this type of question also in a different mode of measurement, we calculated
theoretical photoelectron diffraction intensities with high angular resolution near the [001] zone-
axis direction of Si(001). The idea is to use information on the complex fine structure of a peak
in a reduced angular area, rather than to compare two peak positions which are relatively far
apart.

The patterns shown in figure 9 correspond to an angular region of about ±5◦ around the
Si(001) surface normal. To get an impression about the relative size of this area, it is comparable
to the central white spot in the calculated Si(111) pattern for 10 keV in figure 5. We calculated
the patterns for electrons at 10 keV kinetic energy in cubic Si and for films compressed by 1
and 2% along the direction of the surface normal. A tetragonal distortion of 1% can be easily
sensed, with a distortion of 2% being even more obvious. By means of calculations in a small
energy range around 10 keV, we also estimate that an even relatively modest energy resolution of
approximately 50 eV would be sufficient to observe the effect, thus making such measurements
much faster. This simplification in the measurement is because the 50 eV change in energy
changes the electron de Broglie wavelength by only

√
10 050/10 000 = 1.0002. In this sense,

one could trade lower energy resolution for higher angular sensitivity in a display analyzer.
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Figure 10. Calculated photoelectron diffraction pattern for a Si(111) surface at
6 keV photoelectron kinetic energy from impurities statistically distributed in the
Si lattice. Left: impurity located at the substitutional (Si) sites, right: impurity
located at the tetrahedral interstitial (T) sites.

3.2.3.3. Impurity or dopant site determination. Another possible application of high-energy
XPD concerns the determination of the crystallographic position of impurities in an otherwise
perfect crystal. A similar problem appears in the context of fluorescence radiation from
impurities under excitation of crystals by either x-rays [37] or electrons [38] while changing
the incidence angle. Close similarities also exist to the emission channelling technique using
high-energy conversion electrons from implanted radioactive isotopes [39].

By reciprocity we see that the process of sensing a diffracted incident electron intensity
by atomic detectors that are placed somewhere inside the unit cell (emitting fluorescence
x-rays according to how many electrons hit the atom as a function of incidence angle) is in
principle the time-reversed version of the excitation of localized atomic sources by x-rays,
producing photoelectrons and detecting the diffraction along the outgoing path to the detector.
As a consequence, detection of impurity sites in HXPD should be possible via the same
interpretational approaches as used in the electron microscopy technique of ‘atom location
by channeling enhanced microanalysis’ (ALCHEMI [38]). The basic mechanism of impurity
site determination is again closely based on the diffraction of high-energy electrons to specific
sections of the unit cell as discussed above in connection with figure 6. Because of the element-
specific photoelectron excitation, an impurity which is statistically distributed in the crystal and
which takes a specific site in a unit cell can act as an identifiable detector of the diffracted
intensity in that part of the unit cell that it occupies, without at the same time taking part in the
three-dimensional lattice periodicity that dictates the character of the diffraction process. This
means that the impurity could also be placed at an interstitial site and thus would show a Kikuchi
line profile which is inverted with respect to the other atoms. This leads to the general idea of
identifying an impurity site by its characteristic Kikuchi band profile in the HXPD pattern.
In fact, it has been previously shown that site-selective Kikuchi patterns can be reproduced
by our approach for the case of photoelectron diffraction from AlN and CaF2 at about 1 keV
energy [21].

This site-specific behavior is expected to remain valid at higher energies, and we illustrate
these effects in figure 10, where the HXPD patterns of an impurity source in Si, emitting
6 keV photoelectrons from either the substitutional (Si) site (left) or from the interstitial site
(T) of tetrahedral symmetry (right) are compared. Figure 10 clearly shows that characteristic
dark bands appear in the HXPD pattern from the T-site as compared with the Si site. This
demonstrates that it should be possible to determine impurity or dopant sites in bulk crystals
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and buried films under hard x-ray excitation by their characteristic diffraction patterns in a
long-range ordered host crystal.

3.2.3.4. Effects beyond the inelastic mean free path picture. Compared with the elastic
interference effects that lead to changing Kikuchi band profiles of impurities occupying different
positions in the unit cell, the qualitatively different contrast reversal effect of Kikuchi bands
described below could allow measurements of localized absorption effects. In photoelectron
spectroscopy and diffraction, the usual way to account for the losses of photoelectrons from the
elastic channel is to introduce an inelastic mean free path corresponding to a constant imaginary
part of the inner potential V0i . This will reduce the electron intensity with the traveled distance
independently of the electron’s place and direction in the crystal. It can be easily imagined,
however, that the probability of inelastic scattering can depend on whether the electron wave
field has a maximum amplitude between or at the atomic positions. In the latter case, any
inelastic process that is localized at the atomic positions should be increased. This behavior
is not captured by a constant imaginary potential, which can only reproduce the isotropic
absorption. Additional Fourier components of the imaginary potential can be introduced to
describe such localized inelastic interactions. Investigations of such localized inelastic scattering
processes are more difficult at the lower electron energies typical of XPD because of the
delocalized nature of the dominating inelastic processes (e.g. plasmons and valence-electron
excitations) and the correspondingly short inelastic mean free path.

At high electron energies, we can use the crystal as an interferometric beam splitter which,
in the vicinity of a Bragg reflection, distributes electrons in a very well defined way either
between or onto the atomic planes. We have seen above, in the discussion of the intensity
distribution within a Kikuchi band, that in the middle of the band, the probability amplitude of
the outgoing electrons is maximized at the atomic planes (figure 11, type I Bloch wave). This in
turn also means that electrons in this wave field will experience an increase in localized inelastic
processes, like e.g. phonon losses or core excitations. In contrast, for angles slightly larger than
the Bragg angle, the electron wave field is maximized between the atomic planes (figure 11, type
II Bloch wave) and thus the electrons moving in this type of field can escape from the crystal
with much less of these localized inelastic collisions. If the photoemitters are distributed equally
in all thicknesses of the sample, the emitters near the surface will dominate the diffraction
pattern. For these low thicknesses, the difference in absorption of the two wave fields can be
neglected and our explanation of section 3.2.2 is appropriate. However, if we had emitters
in a buried layer, we should be able to sense the localized absorption by a contrast reversal
of a Kikuchi band: with increasing thickness of the film above the emitters, the maximum of
intensity in the middle of the band turns into a minimum because electrons in this wave field
will be preferentially absorbed. This process will start at the larger emission angles, because
these electrons have to travel the longest distance in the crystal. We illustrate this effect by
calculations for Si(111) at 6 keV in figure 12, placing the emitters in starting depths of 5, 10 and
30 nm. Figure 12 clearly shows how the contrast is reversing with increasing thickness. A similar
effect is known in transmission electron microscopy and is termed ‘anomalous absorption’.
For the description of the localized inelastic scattering, we have used the parameters of Bird
and King [40], who use an Einstein model to determine the higher order Fourier components
of the imaginary part of the potential which are mainly due to thermal diffuse scattering. An
experimental study of this contrast reversal process should thus give insight into the localization
of inelastic scattering in photoemission spectroscopy.
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Figure 11. Contrast reversal of a Kikuchi band with increasing depth of a
photoelectron emitter. The type I Bloch wave is localized at the atomic planes
and is also more strongly absorbed. This means that beyond a certain thickness,
the type I wave is almost completely absorbed and photoelectrons do not reach
the surface. Because the type I wave dominates in the middle of the band, there
will be a minimum of intensity for a deep source.

Figure 12. Contrast reversal of Kikuchi bands in photoelectron diffraction
patterns from Si(111) at 6 keV with increasing depth of emitters at Si positions
starting at thicknesses of 5, 10 and 30 nm. Note the reversal of contrast in the
indicated features when going from 5 nm to 10 and 30 nm, respectively. The
inelastic mean free path was taken to be 5 nm. If only isotropic absorption is
considered, no contrast reversal is occurring (the patterns then are similar to
figure 3).

3.2.3.5. Spin-dependent effects and magnetic dichroism. In complete analogy to the lower
energy case, in HXPD it should also be possible to observe diffraction effects that depend
on the photoelectron spin [41] and magnetic dichroism. Although the difference in purely
exchange scattering of spin-up and spin-down electrons is expected to decrease as energy is
increased [42], the spin–orbit effects on scattering will increase. Beyond this, the spin–orbit
splitting of energy levels, coupled with additional energy splitting due to multiplet effects,
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should produce magnetic circular dichroism (MCD). MCD in combination with HXPD should
be useful for the analysis of the bulk magnetism of complex new materials.

As experimental confirmation that such effects should exist in hard XPD, we note that
MCD effects of greater than 15% have been seen recently in Fe 2p emission from Fe3O4 at
7.9 keV excitation energy by Ueda et al [43]. A simple one-electron picture of such effects in
transition-metal 2p emission permits relating the MCD intensity to the matrix elements and
phase shifts associated with the l = ±1 (s or d) outgoing wave components [44]. Adding to
our dynamical theory a more correct description of these matrix elements should thus permit
describing such magnetism-related effects and their dependence on angle. A precise treatment of
such effects would however also have to take into account the precise L = (l, m) states involved,
so as to also include the non-magnetic circular dichroism effects associated with strong forward
scattering [45], although these are expected to become much smaller at higher energies because
of their inverse dependence on wavevector and the distance of a given scatterer from the emitter.
Cluster calculations might in fact be a more direct way of modeling MCD in HXPD if the
energies are not too high.

4. Comparison to cluster model calculations

In figure 13, we now show calculations for s-wave emission from C(111) based on a cluster
model whose methodology is described in detail elsewhere [17]. These calculations were carried
out in single scattering (SS) and for emission from emitters in a cluster containing about 13 000
atoms and extending to about 30 Å below the surface. The Kikuchi bands are clearly seen in
all these plots, which can be compared directly with the first seven panels in figure 4, except
that the dynamical calculations in figure 4 include multiple-scattering effects. Clearly, the main
trend of a narrowing of the Kikuchi bands with increasing energy is reproduced by the cluster
calculation. The main difference is seen in the middle of the Kikuchi bands, for which the SSC
calculations exhibit decreased intensity. Even in the forward-scattering directions, which usually
show enhancements of intensity, we see a reduction of intensity, in disagreement with dynamical
theory and experiment at 1 keV. It is in fact not surprising that the SSC patterns exhibit more
purely Bragg-reflection-like Kikuchi bands with less filling in between the intensity maxima,
as that is exactly what is implicit in the theory. However, even for this too simplified model,
we note that a closer inspection of the weaker fine structure in the SSC patterns shows some
similarity to the dynamical patterns in figure 2. In figures 13(b) and (c), we compare the central
portion of the patterns for 1 keV, an energy for which we know that dynamical theory agrees
with experiment (cf figure 2). Here, in particular, we see that those maxima that result from
features at the Bragg angle from a given set of planes are generally in agreement between the
two theoretical approaches. However, the more subtle fine structure is definitely not correctly
predicted in the SSC calculations.

Adding multiple scattering to the all-layer cluster calculations, which becomes an even
more time-consuming effort, might be expected to ultimately yield results closer to the
dynamical calculation, which implicitly includes the higher orders of scattering via the basic
assumptions of the Bloch wave dynamical diffraction theory. We show in figure 2(c) that an
extended multiple scattering cluster (MSC) simulation can reproduce the observed Kikuchi
features in the experimental data of figure 2(a) much better than the single scattering simulations
in figure 13. These MSC calculations have been carried out using the EDAC code [17] with
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Figure 13. EDAC SSC simulations and comparison with dynamical calculation.
(a) Photoelectron diffraction patterns from diamond C(111) at the kinetic
energies indicated and simulated using an SSC approach [17] instead of
the dynamical approach used in all the previous figures. The cluster was
hemispherical and contained about 13 000 atoms. Emitters in all layers were
included. (b) and (c) Comparison of the central portions of the HXPD patterns at
1 keV emission energy from dynamical theory and SSC theory, respectively.

the carbon sample represented by a hemispherical cluster of N = 2970 atoms (cluster radius
∼20 Å) and one emitter per layer, emitting into the s channel. Convergence between 20 and
40 iterations is observed in the solution of the self-consistent multiple scattering equations
by means of the Lanczos method with inclusion of (13 + 1)2 multipoles to represent each
atomic scattering event (i.e. Lmax = 13) and an electron inelastic mean free path of 16 Å. Both
the dynamical simulation and the MSC calculations agree reasonably well with experiment,
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including fine details in the angular distributions. Given the resolution of the experimental
data, it is difficult to say which simulation is best, although the MSC results are somewhat
better as to the fine structure in the center of the pattern. Both simulations clearly show that
multiple or ‘dynamical’ scattering is essential for a correct description of the experimental data.
However, the two different simulation approaches need to be put into perspective: the dynamical
simulation shown in figure 2(b) takes about 10 minutes on a single CPU of a recent PC, while
the EDAC calculation of figure 2(c) constitutes a tour de force in multiple scattering simulations
and requires 12 days on a similar machine. The dynamical simulation is thus best suited to deal
with the high kinetic energy diffraction problem discussed here, whereas EDAC is designed
to cope with diffraction at lower kinetic energies, for which the mean free path is shorter, the
atomic cluster size N is smaller and the maximum order of angular momentum in scattering is
also smaller, since the computation time in EDAC scales as ∼N 2(Lmax + 1)3.

In summary, although the cluster approach is not the most efficient one for the calculation
of HXPD from multilayer ordered crystals, it is able to reproduce the basic Kikuchi band
features, and should still be useful in situations with less long-range order and/or for emission
from structures very near the surface.

5. Summary

We have presented a long-range-order dynamical scattering approach for simulating
photoelectron diffraction patterns at high kinetic energies. The approach is based on exploiting
the quasi three-dimensional translational symmetry of the scattering potential that the
photoelectron experiences at high energies. The predicted patterns are dominated by Kikuchi
bands which reflect the crystallographic information, and we have verified that even at energies
as low as 1 keV, the agreement with experiment is excellent. We have discussed the systematics
of such HXPD patterns for energies up to 20 keV and also considered several possible
applications, e.g. concerning tetragonal lattice distortions and impurity site determinations.
These applications should extend the structural analysis power of XPD and also make it a much
more generally useful tool for studying truly bulk properties of complex new materials.
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