1,051 research outputs found
Correction of non-linearity effects in detectors for electron spectroscopy
Using photoemission intensities and a detection system employed by many
groups in the electron spectroscopy community as an example, we have
quantitatively characterized and corrected detector non-linearity effects over
the full dynamic range of the system. Non-linearity effects are found to be
important whenever measuring relative peak intensities accurately is important,
even in the low-countrate regime. This includes, for example, performing
quantitative analyses for surface contaminants or sample bulk stoichiometries,
where the peak intensities involved can differ by one or two orders of
magnitude, and thus could occupy a significant portion of the detector dynamic
range. Two successful procedures for correcting non-linearity effects are
presented. The first one yields directly the detector efficiency by measuring a
flat-background reference intensity as a function of incident x-ray flux, while
the second one determines the detector response from a least-squares analysis
of broad-scan survey spectra at different incident x-ray fluxes. Although we
have used one spectrometer and detection system as an example, these
methodologies should be useful for many other cases.Comment: 13 pages, 12 figure
An Efficient Algorithm for Automatic Structure Optimization in X-ray Standing-Wave Experiments
X-ray standing-wave photoemission experiments involving multilayered samples
are emerging as unique probes of the buried interfaces that are ubiquitous in
current device and materials research. Such data require for their analysis a
structure optimization process comparing experiment to theory that is not
straightforward. In this work, we present a new computer program for optimizing
the analysis of standing-wave data, called SWOPT, that automates this
trial-and-error optimization process. The program includes an algorithm that
has been developed for computationally expensive problems: so-called black-box
simulation optimizations. It also includes a more efficient version of the Yang
X-ray Optics Program (YXRO) [Yang, S.-H., Gray, A.X., Kaiser, A.M., Mun, B.S.,
Sell, B.C., Kortright, J.B., Fadley, C.S., J. Appl. Phys. 113, 1 (2013)] which
is about an order of magnitude faster than the original version. Human
interaction is not required during optimization. We tested our optimization
algorithm on real and hypothetical problems and show that it finds better
solutions significantly faster than a random search approach. The total
optimization time ranges, depending on the sample structure, from minutes to a
few hours on a modern laptop computer, and can be up to 100x faster than a
corresponding manual optimization. These speeds make the SWOPT program a
valuable tool for realtime analyses of data during synchrotron experiments
Bulk-sensitive Photoemission of Mn5Si3
We have carried out a bulk-sensitive high-resolution photoemission experiment
on Mn5Si3. The measurements are performed for both core level and valence band
states. The Mn core level spectra are deconvoluted into two components
corresponding to different crystallographic sites. The asymmetry of each
component is of noticeable magnitude. In contrast, the Si 2p spectrum shows a
simple Lorentzian shape with low asymmetry. The peaks of the valence band
spectrum correspond well to the peak positions predicted by the former band
calculation.Comment: To be published in: Solid State Communication
Interface Engineering to Create a Strong Spin Filter Contact to Silicon
Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on
silicon is a perfect route to enrich silicon nanotechnology with spin filter
functionality.
To date, the inherent chemical reactivity between EuO and Si has prevented a
heteroepitaxial integration without significant contaminations of the interface
with Eu silicides and Si oxides.
We present a solution to this long-standing problem by applying two
complementary passivation techniques for the reactive EuO/Si interface:
() an hydrogen-Si passivation and () the
application of oxygen-protective Eu monolayers --- without using any additional
buffer layers.
By careful chemical depth profiling of the oxide-semiconductor interface via
hard x-ray photoemission spectroscopy, we show how to systematically minimize
both Eu silicide and Si oxide formation to the sub-monolayer regime --- and how
to ultimately interface-engineer chemically clean, heteroepitaxial and
ferromagnetic EuO/Si in order to create a strong spin filter contact to
silicon.Comment: 11 pages of scientific paper, 10 high-resolution color figures.
Supplemental information on the thermodynamic problem available (PDF).
High-resolution abstract graphic available (PNG). Original research (2016
Energetic and spatial bonding properties from angular distributions of ultraviolet photoelectrons: application to the GaAs(110) surface
Angle-resolved ultraviolet photoemission spectra are interpreted by combining
the energetics and spatial properties of the contributing states. One-step
calculations are in excellent agreement with new azimuthal experimental data
for GaAs(110). Strong variations caused by the dispersion of the surface bands
permit an accurate mapping of the electronic structure. The delocalization of
the valence states is discussed analogous to photoelectron diffraction. The
spatial origin of the electrons is determined, and found to be strongly energy
dependent, with uv excitation probing the bonding region.Comment: 5 pages, 3 figures, submitted for publicatio
Unintentional F doping of the surface of SrTiO3(001) etched in HF acid -- structure and electronic properties
We show that the HF acid etch commonly used to prepare SrTiO3(001) for
heteroepitaxial growth of complex oxides results in a non-negligible level of F
doping within the terminal surface layer of TiO2. Using a combination of x-ray
photoelectron spectroscopy and scanned angle x-ray photoelectron diffraction,
we determine that on average ~13 % of the O anions in the surface layer are
replaced by F, but that F does not occupy O sites in deeper layers. Despite
this perturbation to the surface, the Fermi level remains unpinned, and the
surface-state density, which determines the amount of band bending, is driven
by factors other than F doping. The presence of F at the STO surface is
expected to result in lower electron mobilities at complex oxide
heterojunctions involving STO substrates because of impurity scattering.
Unintentional F doping can be substantially reduced by replacing the HF-etch
step with a boil in deionized water, which in conjunction with an oxygen tube
furnace anneal, leaves the surface flat and TiO2 terminated.Comment: 18 pages, 7 figure
Direct evidence for ferroelectric polar distortion in ultrathin lead titanate perovskite films
X-ray photoelectron diffraction is used to directly probe the intra-cell
polar atomic distortion and tetragonality associated with ferroelectricity in
ultrathin epitaxial PbTiO3 films. Our measurements, combined with ab-initio
calculations, unambiguously demonstrate non-centro-symmetry in films a few unit
cells thick, imply that films as thin as 3 unit cells still preserve a
ferroelectric polar distortion, and also show that there is no thick
paraelectric dead layer at the surface
Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction
The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision
Temperature-Dependent X-Ray Absorption Spectroscopy of Colossal Magnetoresistive Perovskites
The temperature dependence of the O K-edge pre-edge structure in the x-ray
absorption spectra of the perovskites La(1-x)A(x)MnO(3), (A = Ca, Sr; x = 0.3,
0.4) reveals a correlation between the disappearance of the splitting in the
pre-edge region and the presence of Jahn-Teller distortions. The different
magnitudes of the distortions for different compounds is proposed to explain
some dissimilarity in the line shape of the spectra taken above the Curie
temperature.Comment: To appear in Phys. Rev. B, 5 pages, 3 figure
- …
