175 research outputs found

    Fulfillment of the strong bootstrap condition

    Get PDF
    The self-consistency of the assumption of Reggeized form of the production amplitudes in multi-Regge kinematics, which are used in the derivation of the BFKL equation, leads to strong bootstrap conditions. The fulfillment of these conditions opens the way to a rigorous proof of the BFKL equation in the next-to-leading approximation. The strong bootstrap condition for the kernel of the BFKL equation for the octet color state of two Reggeized gluons is one of these conditions. We show that it is satisfied in the next-to-leading approximation

    On relativization of the Sommerfeld-Gamow-Sakharov factor

    Full text link
    The Sommerfeld-Gamow-Sakharov factor is considered for the general case of arbitrary masses and energies. It is shown that the scalar triangular one-loop diagram gives the Coulomb singularity in radiative corrections at the threshold. The singular part of the correction is factorized at the complete Born cross section regardless of its partial wave decomposition. Different approaches to generalize the factor are discussed.Comment: 9 pages, 4 figures; references and discussion are extende

    The next-to-leading order forward jet vertex in the small-cone approximation

    Full text link
    We consider within QCD collinear factorization the process p+p to jet + jet +X, where two forward high-pTp_T jets are produced with a large separation in rapidity Δy\Delta y (Mueller-Navelet jets). In this case the (calculable) hard part of the reaction receives large higher-order corrections αsn(Δy)n\sim \alpha^n_s (\Delta y)^n, which can be accounted for in the BFKL approach. In particular, we calculate in the next-to-leading order the impact factor (vertex) for the production of a forward high-pTp_T jet, in the approximation of small aperture of the jet cone in the pseudorapidity-azimuthal angle plane. The final expression for the vertex turns out to be simple and easy to implement in numerical calculations.Comment: 32 pages, 4 figures; a few comments and one reference added; a few inessential misprints removed; version to appear on JHE

    Inclusive production of a pair of hadrons separated by a large interval of rapidity in proton collisions

    Full text link
    We consider within QCD collinear factorization the inclusive process p+ph1+h2+Xp+p\to h_1+h_2+X, where the pair of identified hadrons, h1,h2h_1,h_2, having large transverse momenta is produced in high-energy proton-proton collisions. In particular, we concentrate on the kinematics where the two identified hadrons in the final state are separated by a large interval of rapidity Δy\Delta y. In this case the (calculable) hard part of the reaction receives large higher order corrections αsnΔyn\sim \alpha^n_s \Delta y^n. We provide a theoretical input for the resummation of such contributions with next-to-leading logarithmic accuracy (NLA) in the BFKL approach. Specifically, we calculate in NLA the vertex (impact-factor) for the inclusive production of the identified hadron. This process has much in common with the widely discussed Mueller-Navelet jets production and can be also used to access the BFKL dynamics at proton colliders. Another application of the obtained identified-hadron vertex could be the NLA BFKL description of inclusive forward hadron production in DIS.Comment: 29 pages, 9 figures; corrected few typos and added an acknowledgment; version to be published on JHEP. arXiv admin note: substantial text overlap with arXiv:1202.108

    Hysteresis of Backflow Imprinted in Collimated Jets

    Get PDF
    We report two different types of backflow from jets by performing 2D special relativistic hydrodynamical simulations. One is anti-parallel and quasi-straight to the main jet (quasi-straight backflow), and the other is bent path of the backflow (bent backflow). We find that the former appears when the head advance speed is comparable to or higher than the local sound speed at the hotspot while the latter appears when the head advance speed is slower than the sound speed bat the hotspot. Bent backflow collides with the unshocked jet and laterally squeezes the jet. At the same time, a pair of new oblique shocks are formed at the tip of the jet and new bent fast backflows are generated via these oblique shocks. The hysteresis of backflow collisions is thus imprinted in the jet as a node and anti-node structure. This process also promotes broadening of the jet cross sectional area and it also causes a decrease in the head advance velocity. This hydrodynamic process may be tested by observations of compact young jets.Comment: 9 pages, 5 figures, accepted for publication in ApJ

    The infrared structure of gauge theory amplitudes in the high-energy limit

    Get PDF
    We develop an approach to the high-energy limit of gauge theories based on the universal properties of their infrared singularities. Our main tool is the dipole formula, a compact ansatz for the all-order infrared singularity structure of scattering amplitudes of massless partons. By taking the high-energy limit, we show that the dipole formula implies Reggeization of infrared-singular contributions to the amplitude, at leading logarithmic accuracy, for the exchange of arbitrary color representations in the cross channel. We observe that the real part of the amplitude Reggeizes also at next-to-leading logarithmic order, and we compute the singular part of the two-loop Regge trajectory, which is universally expressed in terms of the cusp anomalous dimension. Our approach provides tools to study the high-energy limit beyond the boundaries of Regge factorization: thus we show that Reggeization generically breaks down at next-to-next-to-leading logarithmic accuracy, and provide a general expression for the leading Reggeization-breaking operator. Our approach applies to multiparticle amplitudes in multi-Regge kinematics, and it also implies new constraints on possible corrections to the dipole formula, based on the Regge limit
    corecore