96 research outputs found
Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca(2+)(o) concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca(2+)(o) homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα(11)) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα(11) to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders
Genetic Approaches to Metabolic Bone Diseases
Metabolic bone diseases comprise a diverse group of disorders characterized by alterations in skeletal homeostasis, and are often associated with abnormal circulating concentrations of calcium, phosphate or vitamin D metabolites. These diseases commonly have a genetic basis and represent either a monogenic disorder due to a germline or somatic single gene mutation, or an oligogenic or polygenic disorder that involves variants in more than one gene. Germline single gene mutations causing Mendelian diseases typically have a high penetrance, whereas the genetic variations causing oligogenic or polygenic disorders are each associated with smaller effects with additional contributions from environmental factors. Recognition of familial monogenic disorders is of clinical importance to facilitate timely investigations and management of the patient and any affected relatives. The diagnosis of monogenic metabolic bone disease requires careful clinical evaluation of the large diversity of symptoms and signs associated with these disorders. Thus, the clinician must pursue a systematic approach beginning with a detailed history and physical examination, followed by appropriate laboratory and skeletal imaging evaluations. Finally, the clinician must understand the increasing number and complexity of molecular genetic tests available to ensure their appropriate use and interpretation.</p
A G-protein Subunit-α11 Loss-of-Function Mutation, Thr54Met, Causes Familial Hypocalciuric Hypercalcemia Type 2 (FHH2)
Familial hypocalciuric hypercalcemia (FHH) is a genetically heterogeneous disorder with three variants, FHH1 to FHH3. FHH1 is caused by loss-of-function mutations of the calcium-sensing receptor (CaSR), a G-protein coupled receptor that predominantly signals via G-protein subunit alpha-11 (Gα11 ) to regulate calcium homeostasis. FHH2 is the result of loss-of-function mutations in Gα11 , encoded by GNA11, and to date only two FHH2-associated Gα11 missense mutations (Leu135Gln and Ile200del) have been reported. FHH3 is the result of loss-of-function mutations of the adaptor protein-2 σ-subunit (AP2σ), which plays a pivotal role in clathrin-mediated endocytosis. We describe a 65-year-old woman who had hypercalcemia with normal circulating parathyroid hormone concentrations and hypocalciuria, features consistent with FHH, but she did not have CaSR and AP2σ mutations. Mutational analysis of the GNA11 gene was therefore undertaken, using leucocyte DNA, and this identified a novel heterozygous GNA11 mutation (c.161C>T; p.Thr54Met). The effect of the Gα11 variant was assessed by homology modeling of the related Gαq protein and by measuring the CaSR-mediated intracellular calcium (Ca(2+) i ) responses of HEK293 cells, stably expressing CaSR, to alterations in extracellular calcium (Ca(2+) o ) using flow cytometry. Three-dimensional modeling revealed the Thr54Met mutation to be located at the interface between the Gα11 helical and GTPase domains, and to likely impair GDP binding and interdomain interactions. Expression of wild-type and the mutant Gα11 in HEK293 cells stably expressing CaSR demonstrate that the Ca(2+) i responses after stimulation with Ca(2+) o of the mutant Met54 Gα11 led to a rightward shift of the concentration-response curve with a significantly (p < 0.01) increased mean half-maximal concentration (EC50 ) value of 3.88 mM (95% confidence interval [CI] 3.76-4.01 mM), when compared with the wild-type EC50 of 2.94 mM (95% CI 2.81-3.07 mM) consistent with a loss-of-function. Thus, our studies have identified a third Gα11 mutation (Thr54Met) causing FHH2 and reveal a critical role for the Gα11 interdomain interface in CaSR signaling and Ca(2+) o homeostasis. © 2016 American Society for Bone and Mineral Research
Role of Ca2+ and L-Phe in Regulating Functional Cooperativity of Disease- Associated ‘‘Toggle’’ Calcium-Sensing Receptor Mutations
The Ca2+-sensing receptor (CaSR) regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+ ([Ca2+]o) and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca2+]o–induced [Ca2+]i oscillations, inositol-1-phosphate (IP1) accumulation and extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-offunction CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro221 and Leu173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding
The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing-receptor (CaSR) mutation:relevance to autosomal dominant hypocalcemia type 1 (ADH1)
Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum parathyroid hormone (PTH) concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalise the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells and the effect of NPS 2143 on their intracellular calcium responses determined by flow cytometry. NPS 2143 was also administered as a single intraperitoneal bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1, and improve the hypocalcemia associated with this disorder
Calcium-sensing receptor in GtoPdb v.2021.3
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [47] and subsequently updated [77]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [78]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 110], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [36, 47, 61, 108, 109]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [148, 54]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [18] or decreased extracellular ionic strength [109]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
Calcium-sensing receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [44]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [74]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 106], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [34, 44, 58, 104, 105]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [143, 51]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [105]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
Calcium-sensing receptor (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database
The calcium-sensing receptor (CaS, provisional nomenclature as recommended by NC-IUPHAR [46] and subsequently updated [76]) responds to multiple endogenous ligands, including extracellular calcium and other divalent/trivalent cations, polyamines and polycationic peptides, L-amino acids (particularly L-Trp and L-Phe), glutathione and various peptide analogues, ionic strength and extracellular pH (reviewed in [77]). While divalent/trivalent cations, polyamines and polycations are CaS receptor agonists [14, 109], L-amino acids, glutamyl peptides, ionic strength and pH are allosteric modulators of agonist function [35, 46, 60, 107, 108]. Indeed, L-amino acids have been identified as "co-agonists", with both concomitant calcium and L-amino acid binding required for full receptor activation [147, 53]. The sensitivity of the CaS receptor to primary agonists is increased by elevated extracellular pH [17] or decreased extracellular ionic strength [108]. This receptor bears no sequence or structural relation to the plant calcium receptor, also called CaS
- …