386 research outputs found
Heat stress and feeding behaviour of dairy cows in late lactation
Heat stress is one of the most important problems that dairy cows have to face and the use of cooling systems is becoming more and more important. The first reaction that has the animal to cope with the environmental variations is to modify its behaviour. This study was aimed to investigate the effect of heat stress and a cooling system on the feeding behaviour of Italian Holstein Friesian dairy cows in late lactation. Two experiments were performed. In the first experiment, eight dairy cows were firstly kept 7 d under thermoneutral condition, and then under mild heat stress (temperature humidity index, THI, ranging between 72 and 78) for others 7 d. The second experiment consisted of 8 dairy cows used in a two-period cross-over design where the treatment was the use or not of a sprinkler system for cooling cows under mild heat stress. Cows were equipped with a noseband pressure sensor able to detect rumination and eating time, number of rumination and eating chews, number of rumination boluses and rumination intensity. Heat stress reduced rumination time, number of rumination chews and boluses (p <.05), and tended to reduce the number of eating chews (p <.10). Cooled cows increased rumination and eating time (p <.05), rumination intensity (p <.01), and the number of rumination and eating chews (p <.05). In conclusion, feeding behaviour was deeply influenced even by mild heat stress, which was effectively improved by the use of a sprinkler system.HIGHLIGHTS Mild heat stress reduced rumination time, number of rumination chews and boluses of dairy cows in late lactation Cooling cows with sprinklers was effective in alleviating heat stress in terms of feeding behaviour
Humoral and T-Cell Mediated Response after the Third Dose of mRNA Vaccines in Patients with Systemic Lupus Erythematosus on Belimumab
Objective: To evaluate humoral and T-cell cellular-mediated immune response after three doses of SARS-CoV-2 mRNA vaccines in patients with systemic lupus erythematosus (SLE) under Belimumab. Patients and methods: 12 patients on Belimumab and 13 age-matched healthy volunteers were recruited. Patients were in remission or in low disease activity, and they were taking no corticosteroids or only low doses. None of the patients and controls had detectable anti-SARS-CoV-2 antibodies due to previous exposure to the virus. All the patients received three doses of mRNA anti-SARS-CoV-2 vaccines and the humoral and cellular-mediated response were tested 4 weeks after the second dose (T0), 6 months after the second dose (T1) and 4 weeks after the third dose (T2). Comparison with the control group was performed at time T0 (i.e., 4 weeks after the second dose). Total anti-SARS-CoV-2 RBD antibodies were analyzed using a diagnostic assay, while cellular-mediated response was evaluated using the interferon-gamma release assay (IGRA). Results: A humoral response was documented in all the patients at T0 (median 459; IQR 225.25–758.5), but the antibody titer significantly declined from T0 to T1 (median 44.7; IQR: 30.3–202; p = 0.0066). At T2, the antibody titer significantly increased from T1 (median 2500; IQR: 2500–2500), and it was not different from T0 (respectively p < 0.0001, p = 0.66). Cellular-mediated response significantly declined from T0 to T1 (p = 0.003) but not from T0 to T2 (p = 0.3). No differences were found between patients and controls at T0 as regards both humoral and cellular responses (p = 1.0 and p = 0.09 for humoral and cellular responses, respectively). Conclusion: The third dose of mRNA COVID-19 vaccine can restore both humoral and cellular immune response in SLE patients on Belimumab
Production and evaluation of leukocyte- and thrombocyte-rich fibrin membranes in birds
The aim of this study was the preparation and histological evaluation of Leukocyte- and Thrombocyte-Rich Fibrin (L-TRF) membranes obtained from the blood of four bird species. Forty adult healthy birds were divided into four groups of equal size: G1 – macaws, G2 – domestic chickens, G3 – parrots, G4 – toco toucans. A total of 0.5 mL of blood was collected from each bird, put into a glass tube without anticoagulant and centrifuged at 3000 rpm for 10 min. L-TRF membranes produced after compression of the clot were processed for histological analysis. The ratio of thrombocytes/area was not significantly different among Groups G2, G3 and G4, but a significant difference was found between Groups G1 and G2 with the highest thrombocyte concentration/area in G1. The groups did not differ statistically in the number of leukocytes/area. The fibrin-to-cells ratio did not vary statistically among Groups G1, G2 and G3, but this ratio was significantly higher in Group G4 than in the other groups. The thrombocyte-to-leukocyte ratio was the highest in Group G1, but it did not differ among Groups G2, G3 and G4. In conclusion, the centrifugation protocol allowed the production of L-TRF membranes in the four bird species studied. Histologically, cell ratios were analogous in domestic chickens and parrots, and macaws had the highest ratio of thrombocytes
Caffeine Inhibits EGF-Stimulated Trophoblast Cell Motility through the Inhibition of mTORC2 and Akt.
Impaired trophoblast invasion is associated with pregnancy disorders such as early pregnancy loss and preeclampsia. There is evidence to suggest that the consumption of caffeine during pregnancy may increase the risk of pregnancy loss; however, little is known about the direct effect of caffeine on normal trophoblast biology. Our objectives were to examine the effect of caffeine on trophoblast migration and motility after stimulation with epidermal growth factor (EGF) and to investigate the intracellular signaling pathways involved in this process. Primary first-trimester extravillous trophoblasts (EVT) and the EVT-derived cell line SGHPL-4 were used to study the effect of caffeine on EGF-stimulated cellular motility using time-lapse microscopy. SGHPL-4 cells were further used to study the effect of caffeine and cAMP on EGF-stimulated invasion of fibrin gels. The influence of caffeine and cAMP on EGF-stimulated intracellular signaling pathways leading to the activation of Akt were investigated by Western blot analysis. Caffeine inhibits both EGF-stimulated primary EVT and SGHPL-4 cell motility. EGF stimulation activates phosphatidylinositol 3-kinase, and Akt and caffeine inhibit this activation. Although cAMP inhibits both motility and invasion, it does not inhibit the activation of Akt, indicating that the effects of caffeine seen in this study are independent of cAMP. Further investigation indicated a role for mammalian target of rapamycin complex 2 (mTORC2) as a target for the inhibitory effect of caffeine. In conclusion, we demonstrate that caffeine inhibits EGF-stimulated trophoblast invasion and motility in vitro and so could adversely influence trophoblast biology in vivo
Predicting lymphoma development in patients with Sjögren's syndrome
ABSTRACTIntroduction: The issue of predicting lymphoma in primary Sjogren's syndrome (pSS) starts from its clinical and biologic essence, i.e., an autoimmune exocrinopathy with sicca syndrome, infl..
Detection of sputum cofilin-1 as indicator of malignancy
Cofilin-1 (CFL1), a small protein of 18 kDa, has been studied as a biomarker due to its involvement in tumor cell migration and invasion. Our aim was to evaluate CFL1 as an indicator of malignancy and aggressiveness in sputum samples. CFL1 was analyzed by ELISA immunoassay in the sputum of 73 lung cancer patients, 13 cancer-free patients, and 6 healthy volunteers. Statistical analyses included ANOVA, ROC curves, Spearman correlation, and logistic regression. Sputum CFL1 levels were increased in cancer patients compared to cancer-free patients and volunteers (P1.475 pg/mL showed augmented chance of death, suggesting lung cancer aggressiveness. CFL1 presented diagnostic value in detecting lung cancer and was associated to tumor aggressiveness.São Paulo Research
Foundation (FAPESP No. 2010/11005-5) and the National
Council for Scientific and Technological Development
(CNPq No. 471939/2010-2 and No. 483005/2012-info:eu-repo/semantics/publishedVersio
An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus
The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility
- …