5,057 research outputs found

    Switching the sign of Josephson current through Aharonov-Bohm interferometry

    Get PDF
    We investigate the DC Josephson effect in a superconductor-normal metal-superconductor junction where the normal region consists of a ballistic ring. We show that a fully controllable π\pi-junction can be realized through the electro-magnetostatic Aharonov-Bohm effect in the ring. The sign and the magnitude of the supercurrent can be tuned by varying the magnetic flux and the gate voltage applied to one arm, around suitable values. The implementation in a realistic set-up is discussed.Comment: 4 pages, 3 figure

    Low dose of Rotigotine in post-stroke patients with vascular parkinsonism and obstructive sleep apnoea syndrome, effects on quality of life and rehabilitation therapy

    Get PDF
    Stroke is a frequent cause of disability in U.S.A. (200.000/ year). Aim: The aim of this study is to underline the effect of low dose of Rotigotine patches 2 mg/24 h, a complete dopamine agonist with continuous dopaminergic stimulation through the transdermal administration, in elderly with recent stroke and vascular Parkinsonism about quality of life and adherence to rehabilitation therapy. Methods: We have enrolled 6 elderly patients (3 males and 3 females, range age 60 – 95 years) with recent ischemic and vascular Parkinsonism. We have evaluated quality of life and cognitive function with UPDRS part III, MMSE, ADL, IADL and Morinsky Scale. At the same time we have evaluated the adherence to therapy and timing of rehabilitation therapy before and post-administration of Rotigotine 2 mg/24 hours. Conclusion: In conclusion, Rotigotine could be a new useful approach in the treatment of elderly patients with recent ischemic and hemorrhagic stroke correlated with vascular Parkinsonism which can lead to an akinesia with the need to start rehabilitation therapy. Our preliminary data gives comfortable results but, at this time, we have enrolled only few patients to give conclusive results

    The Equilibrium Photoionized Absorber in 3C351

    Full text link
    We present two ROSAT PSPC observations of the radio-loud, lobe-dominated quasar 3C 351, which shows an `ionized absorber' in its X-ray spectrum. The factor 1.7 change in flux in the ∼\sim2~years between the observations allows a test of models for this ionized absorber. The absorption feature at ~0.7 keV (quasar frame) is present in both spectra but with a lower optical depth when the source intensity - and hence the ionizing flux at the absorber - is higher, in accordance with a simple, single-zone, equilibrium photoionization model. Detailed modeling confirms this agrement quantitatively. The maximum response time of 2 years allows us to limit the gas density: n_e > 2 x 10^4 cm^{-3}; and the distance of the ionized gas from the central source R < 19 pc. This produces a strong test for a photoionized absorber in 3C~351: a factor 2 flux change in ~1 week in this source must show non-equilibrium effects in the ionized absorber.Comment: 10 pages, 3 figures, accepted by Ap

    Optical pulsations from a transitional millisecond pulsar

    Get PDF
    Weakly magnetic, millisecond spinning neutron stars attain their very fast rotation through a 1E8-1E9 yr long phase during which they undergo disk-accretion of matter from a low mass companion star. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is still strong enough to channel the accreting matter towards the magnetic poles. When mass transfer is much reduced or ceases altogether, pulsed emission generated by particle acceleration in the magnetosphere and powered by the rotation of the neutron star is observed, preferentially in the radio and gamma-ray bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally-powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified. Here we report the detection of optical pulsations from a transitional pulsar, the first ever from a millisecond spinning neutron star. The pulsations were observed when the pulsar was surrounded by an accretion disk and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere seems more likely.Comment: 32 pages, 7 figures. The first two authors contributed equally to this wor

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    Mapping the Lyman-Alpha Emission Around a z~6.6 QSO with MUSE: Extended Emission and a Companion at Close Separation

    Full text link
    We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10−18^{-18} erg/s/cm2^2/arcsec2^2 over a 1 arcsec2^2 aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x1042^{42} erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of nH_H ~ 6 cm−3^{-3}. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x1042^{42} erg/s and its inferred star-formation-rate is SFR ~ 1.3 M⊙_\odot/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.Comment: 17 pages, 15 figures. Accepted for publication in Ap

    A theory for long-memory in supply and demand

    Get PDF
    Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial markets [2, 19]. We show how this can be caused by delays in market clearing. Under the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If the size of such large orders is power law distributed, this gives rise to power law decaying autocorrelations in the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of volume v is proportional to v to the power -alpha and the size of executed orders is constant, the autocorrelation of order signs as a function of the lag tau is asymptotically proportional to tau to the power -(alpha - 1). This is a long-memory process when alpha < 2. With a few caveats, this gives a good match to the data. A version of the model also shows long-memory fluctuations in order execution rates, which may be relevant for explaining the long-memory of price diffusion rates.Comment: 12 pages, 7 figure

    Mapping the Lyman-Alpha Emission Around a z~6.6 QSO with MUSE: Extended Emission and a Companion at Close Separation

    Get PDF
    We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10−18^{-18} erg/s/cm2^2/arcsec2^2 over a 1 arcsec2^2 aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x1042^{42} erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of nH_H ~ 6 cm−3^{-3}. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x1042^{42} erg/s and its inferred star-formation-rate is SFR ~ 1.3 M⊙_\odot/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.Comment: 17 pages, 15 figures. Accepted for publication in Ap

    On the metallicity distribution of classical Cepheids in the Galactic inner disk

    Get PDF
    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R∼\sim40,000) high signal-to-noise ratio (S/N ≥\ge 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG lele 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG ∼\sim 6.5 kpc to 0.4 dex for RG ∼\sim 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]∼\sim0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]∼\sim0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.Comment: 10 pages, 5 figures; Corrected typos, corrected Table
    • …
    corecore