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Switching the sign of Josephson current through Aharonov-Bohm interferometry
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The electromagnetostatic Aharonov-Bohm effect is proposed as a tool to realize a fully controllable Joseph-
son 7 junction. Both the sign and the magnitude of the supercurrent can be tuned in a ring-shaped ballistic
normal region coupled to superconducting electrodes by varying the magnetic flux and the electric field around
suitable values. We provide a theoretical description of the system within the scattering matrix theory and

discuss its implementation in a realistic setup.
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The broad interest in mesoscopic physics has recently
spurred a renewed impulse in the context of Josephson ef-
fect. Because of its large spectrum of applications to nano-
technology, the art of manipulating the supercurrent is pres-
ently under the spotlight. Josephson field-effect transistors,
for instance, have been proposed' and realized both with
semiconductors and carbon nanotubes.” A growing interest is
nowadays devoted to the issue of supercurrent sign reversal:
a mr-junctions state, i.e., a Josephson current flowing in the
direction opposite to the phase difference between the super-
conductors, has already been obtained with ferromagnet-
superconductor (FS) junctions.® In these systems the sign of
the current flow depends on the F-layer thickness, which
cannot be varied during an experiment. In view of techno-
logical applications, the tunability of a system instead plays a
crucial role, and the realization of controllable  junctions
represents a major challenge both on the theoretical and ex-
perimental point of view. To this end, two approaches have
been explored so far: tunable 7 states have been realized
either by driving far from equilibrium the junction quasipar-
ticle distribution function through current injection from ad-
ditional terminals,* or by exploiting the electronic correla-
tions in a quantum dot, where the electron number can be
tuned through a gate.’

In this Rapid Communication, we present a different op-
erational principle to implement a controllable 7 junction,
which is based on the electromagnetostatic Aharonov-Bohm
(AB) effect in a ballistic normal (N) ring coupled to two
superconducting (S) leads. The proposed setup is shown in
Fig. 1: the ring is treated by a magnetic flux ®p, and a gate
voltage V is applied to one of the arms. Exploiting the
magnetic or the electrostatic AB effect, one can tune the
transmission of the ring and therefore manipulate the magni-
tude of the Josephson current. Here we show that if both the
magnetic and the electric field are suitably applied, the sign
of the supercurrent can be changed also. This leads to a fully
controllable system operating at equilibrium, which exhibits
potential for the implementation of low-dissipation transis-
tors, quantum interference devices, as well as reduced-noise
qubits.® Ideal candidates for the realization of the proposed
setup are intermediate and/or long S-N-S junctions fabricated
with In,Ga,_,As (with x=0.75)7 or InAs® rings, since they
allow ballistic electron transport and lack of a Schottky bar-
rier when contacted to metals, e.g., superconducting Nb.

We describe the system by setting the superconducting
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order parameter as A(x)=|A|e¥? in the left lead, A(x)
=|A]e*¥? in the right lead, and A(x)=0 in the N region,
where y is the phase difference between the S electrodes.
The Josephson current J(x) of an S-N-S junction with an N
region characterized by a Fermi velocity v]}] and a length L
can be written’ as a sum of two contributions J4(x) and
J.(x), arising from the discrete Andreev levels and the
continuous  spectrum, respectively. Explicitly, J4.(x)
=(2eE/1)ja(x), where E =fiv}!/L is the energy associated
with L (here the length of each ring arm), and

jd(x>:2tanh(J’—8 BL)(— i ) (1)
» 2 ax
o2 [T ef\ |9 Im[H(e; x)]
Jjx) = _7718L flAL de ln[Z cosh(—2 )]—ﬁs .

(2)

In Egs. (1) and (2) energies are expressed in terms of E;, so
that |A,|=|A|/E,;, e=(E-Ep)/E, is the energy variation
with respect to the Fermi level Ej. of leads and N region, and
Br=E;/kgT is the inverse temperature. The Andreev levels
&,(x) €[0;|A.|] in Eq. (1) are determined by the solutions
of D(g;x)=0,'" where the function

D(s;x) =det[1 - A(e)r,(YS(&)ra(0S (- )] (3)

accounts both for the dynamics in the N region, through the
particle (hole) scattering matrix S(g) (S*(-¢)), and for the
Andreev reflections at the S contacts through the matrix
ra(x)=diag(e’¥? ¢7¥?) and the amplitude A(ge), which
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FIG. 1. Scheme of the Aharonov-Bohm Josephson junction.
Light gray region indicates the normal metal ring, whereas dark
gray denotes the superconducting leads.
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equals exp(—2i arccos(e/|A.|)) for |e|<|A;| and (e
—Ve2=|A, )/ (e+\e2=|A,]?) for || >|A,|. Finally, the func-
tion H appearing in Eq. (2) reads

H(e;x) =d) In D(e;)). (4)

Although general, Egs. (1) and (2) do not allow a straight-
forward evaluation of J(y) for an arbitrary S matrix, for the
determination of the Andreev levels may be a formidable
task. In the limit of short junction |A,|<1, however,
Beenakker showed that the contribution (2) vanishes, and
that the evaluation of the Andreev levels in Eq. (1) is con-
siderably simplified. He thus proved® that in this limit and for
a symmetric S matrix, the Josephson current acquires a
simple expression in terms of the transmission coefficients
7;s of S. In a typical experimental realization of the setup of
Fig. 1, however, the short junction regime |A;| <1 is not
achieved; as observed above, one rather has |A;|=1. Fur-
thermore, in the presence of a magnetic flux, the ring S
matrix is not symmetric in general. It is therefore important
to analyze the behavior of the Josephson current also beyond
the short-junction limit, and without assuming the symmetry
of the S matrix. To this purpose, it is suitable to rewrite Egs.
(1) and (2) in a different way. Here we briefly sketch the
main steps of our strategy, based on analytic continuation of
Eq. (4) in the complex plane.!! We first observe that, due to
causality,!? the scattering matrix S(e) has an analytic con-
tinuation S(z) in the upper complex half plane Im(z)>0.
Then, elementary properties of holomorphic functions lead
to prove that Hg(z:x)=d,InDg(z;x) and Hu(z:x)
=4, In DA(z; x) with

Dy(z;x) = det[1 - A()r,()S@ra(0(S(=2 )L, (5)

D(z;x) = det[1 = A(Dra()(SEN ra(0S(=2)]  (6)

are analytic continuations of Eq. (4) for Im(z)>0 and
Im(z) <0, respectively. Here A(z) is the continuation of A(e)

+i0%)=H(e+i07) for |e| <|A,| stemming from Egs. (5) and
(6), together with equality d,e,=-d,D(e,;x)/d.D(e,; x) for
the Andreev levels, allows one to rewrite Eq. (1) as

Jalx) =

%E

p

. tanh( ﬁL) H (zx)de  (7)
2 FP

where I'; (I'}) is a small semicircular contour around &, in
the upper (lower) half plane. Similarly, the relation Hg(e
+i0%)=H (e +i0") for |¢| >|A,| stemming from Egs. (5) and
(6) leads to cast Eq. (2) in the same form as Eq. (7), where
the sum over I'} (I'}) is replaced by a contour along the
the ana-
lyticity of Hg(z;x) and Ha(z;x) allows one to merge the
above two contributions into
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J(x) = d, > Re In(Dg(iw,: X)), (8)
m=0

where w,,=(2m+1)7/B; are the Matsubara frequencies in
units of E,/A. The relation Ha(=iw,;x)=Hg(iw,;x) has
been used.

Equation (8), combined with Eq. (5), gives the Josephson
current in terms of the N-region scattering matrix S. Al-
though equivalent to the original equations (1) and (2), Eq.
(8) does not require determining the Andreev levels, yielding
a major simplification in computing J(x) for nonshort
junctions.'> We shall now show the rich physical scenario
arising from a nonsymmetric S matrix. In order to illustrate
this, we focus here on the case of a single conduction chan-
nel, where the S matrix is a 2 X 2 unitary matrix. Any U(2)
matrix can be univocally written as

p(e) —itle) )

L) p'e) ®)

S(S) — eia(s)(

where |p(g)|*+|7(g)[>=1. Inserting Eq. (9) into Eq. (3), one
obtains

D(e;x) =1 +A%(e)e*™® —24(e)e™ “{Re(p(e)p’(~ &)
+|r(e)7(— &)|cos[x — xo(&)]. (10)

where W(g)=a(e)—a(-¢). Notably, Eq. (10) shows that the
phase difference y is renormalized by a shift y,, related to
the phase of the amplitude 7(g)=|7(¢)|exp(i¢,(g)) through
the relation

X()(S) = ¢7(8) + ¢7(_ 8)' (1 1)

From Egs. (11) it follows that y, is nonvanishing only if 7 is
a complex number. At first sight, this property might seem a
quite general feature of any quantum interferometer. This is,
however, not the case, for the entries S;; of the scattering
matrix obey the microreversibility relation'? S;|z=S;| s,
where B is the magnetic field. Thus, for any interferometer
operating in the absence of magnetic field, the S matrix is
symmetric, i.e., 7(g) is real [see Eq. (9)]. One thus has x,
=0 and the system always behaves as a 0 junction. By con-
trast, if B# 0, the time-reversal symmetry (TRS) is broken,
opening the possibility to the asymmetry of the S matrix, and
hence to a x,# 0. Importantly, B# 0 is a necessary, but not
sufficient condition to have a 7 state: in a symmetric ring
threaded by a uniform B, for instance, S is still symmetric
and one has a 0 junction. If, however, the interferometer is
suitably designed, an appropriate tuning of its parameters can
lead to x,=r, inducing a switching to a 7 state.

The electromagnetostatic AB interferometer (see Fig. 1) is
an illuminating example to describe this effect. The explicit
expression for the AB ring S matrix can be obtained with
standard techniques'* by combining the scattering matrices
describing the Y junctions with the propagation matrix along
the ballistic arms. For simplicity we neglect here band cur-
vature, fringe field effects, and spin-orbit interaction. Each
contact is described by the 3 X3 Y-junction matrix SY,'
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with entries S{;=-cos 7, SZ:S};:S;:S;’I:sin Y2,
S),=S¥,=(cos y—1)/2, and S};=S},=(cos y+1)/2, where
the parameter y € [0; /2] accounts for the contact transmis-
sion, with y=m/2 describing a fully transmitting contact and
v— 0 the tunnel limit.'® The transmission of the two contacts
will be assumed equal. The propagation along the two arms
leads to the AB interferometry effect; right movers, for in-
stance, acquire a phase exp(i(kL—¢/2)) along arm 1, and
exp(i(kL+u+ ¢/2)) along arm 2, where ¢p=2medz/h and
u=eVgz/E; (see Fig. 1), similarly for left movers. After
lengthy but standard algebra, one can compute the S matrix
(9) and the phase shift x,, which turns out to fulfill

Re 7p(e)Re 1p(= &) = Im 7p(e)Im 7p(- &)

|7p(e) Tp(— &)

cos xo(e) =

5

(12)

where i7p(e)=2,_.sC, explis(e+kp)], C.=cos[(ux)/2],
and kp=kpL+u/2, with ki the Fermi wave vector. Notice
that y, is independent of the contact transmission. For the
purely electrostatic AB effect (¢p=0 and u#0), we obtain
X0=0, as expected from the preservation of TRS. Moreover,
Eq. (12) yields x,=0, also for the purely magnetic AB effect
(u=0 and ¢+ 0): this is due to the additional relation S;,|z
=S,,|_p, which holds in a symmetric ring if u=0. Although
this relation breaks down if the ring is realized asymmetri-
cally, the armlength is not a tunable quantity. However, Eq.
(12) indicates that a much simpler way to achieve a control-
lable 7 state is to combine the magnetic flux and the gate
voltage: when both ¢#0 and u+# 0, a phase x,# 0 arises.
Notice that, in this case, a Josephson current can flow even if
x=0: if TRS is broken, the amplitude of processes bringing
Cooper pairs from right to left lead are not necessarily com-
pensated by those related to the opposite direction.

By substituting the S matrix into Eq. (10), and by per-
forming the analytic continuation Dy as discussed above, the
Josephson current is determined by Eq. (8). We shall now
discuss the results. Figure 2 displays the switching of J(x)
from 0 to 7-junction behavior, for a setup with |A|=2E, and
contact transmission 1/2 (y=m/3) which corresponds, e.g.,
to a InGaAs ring with L~ 600 nm’ contacted to Nb leads, at
zero temperature.!” In particular, Fig. 2(a) shows J as a func-
tion of the phase difference y: when ¢=0 and u=0, the
junction is in a O state; by applying a gate voltage u=0.8m
the current is strongly suppressed (dotted curve), although its
sign is always positive; however, when a magnetic flux ¢
=0.87 is also introduced, the current sign is reversed (dashed
curve). Figure 2(b) and Fig. 2(c) refer to the Josephson cur-
rent for =0, and show that its sign can be reversed by
tuning either the magnetic flux [Fig. 2(b)] or the gate voltage
[Fig. 2(c)]. Notably, the curves of Fig. 2(b) demonstrate the
crucial role of the gate voltage: for u=0, although J switches
its sign upon varying the flux, the amplitude of the current is
very small (solid curve); the latter is enhanced by increasing
u (dotted and dashed curves).!® The curves of Fig. 2(c) refer
to different values of magnetic flux; in particular, when no
magnetic flux is present (solid curve) the TRS yields J(y
=0)=0 independent of the gate voltage u, whereas when
¢#0 a supercurrent can flow and its sign varies with u
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FIG. 2. (Color online) Sign switching of the Josephson current J
for the setup of Fig. 1 with |A|=2E;, kzL=60, and contact trans-
mission 1/2 (y=/3). (a) j(x) for $=0 and u=0 (solid), for ¢
=0 and #=0.87 (dotted), and for ¢=0.87 and u=0.87 (dashed); (b)
Jj(x=0) vs ¢ for different values of the gate voltage: u=/20 (dot-
ted), u=m/2 (dashed), and u=1.27 (solid); (c) j(x=0) vs u for
different values of magnetic flux: ¢=0 (solid), $=0.17 (dotted),
and ¢=0.97 (dashed).

(dotted curve), with a strong enhancement when the flux
approaches ¢=1. The whole behavior of the Josephson cur-
rent J(x=0) as a function of u and ¢ is displayed in Fig. 3.
The supercurrent exhibits lobes of alternate signs whose
nodes are located around some special values of ¢ and u.
The latter can be roughly estimated through the condition
cos xo=-1 [see Eq. (12)], yielding ¢=Q2m+1)m, u
= (2my+1)7, and u=2(mm;—kgL), with integer m;’s.'” The
sign reversal is thus easily controlled around these values.
This proves the full tunability of the supercurrent through
electromagnetostatic AB effect.

Jh/2eE,

FIG. 3. (Color) Dimensionless Josephson current vs u and ¢ for
an AB ring with |A|=2E;, kpL=60, y=m/3, and x=0.
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In conclusion, we have proposed Aharonov-Bohm inter-
ferometry as a tool to realize a controllable Josephson
junction. While the magnitude of the supercurrent can be
tuned by either the electrostatic or the magnetic AB effect, its
sign can be controlled only if time-reversal symmetry is bro-
ken. We have also shown that a magnetic field alone does not
provide an efficient tuning of the supercurrent [see Fig. 2(b)].
By contrast, the combined use of magnetic and electric field
enhances the supercurrent amplitude, allowing a full control
of the junction. In addition, our results also imply that super-
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current measurements can be used to determine the asymme-
try of the S matrix; indeed the ordinary dc current in a ring
contacted to normal leads only depends on the transmission
coefficient 7=|7?=|7>, and the asymmetry cannot be
probed.
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