78 research outputs found

    PROTOGENE: turning amino acid alignments into bona fide CDS nucleotide alignments

    Get PDF
    We describe Protogene, a server that can turn a protein multiple sequence alignment into the equivalent alignment of the original gene coding DNA. Protogene relies on a pipeline where every initial protein sequence is BLASTed against RefSeq or NR. The annotation associated with potential matches is used to identify the gene sequence. This gene sequence is then aligned with the query protein using Exonerate in order to extract a coding nucleotide sequence matching the original protein. Protogene can handle protein fragments and will return every CDS coding for a given protein, even if they occur in different genomes. Protogene is available from

    The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods

    Get PDF
    The M-Coffee server is a web server that makes it possible to compute multiple sequence alignments (MSAs) by running several MSA methods and combining their output into one single model. This allows the user to simultaneously run all his methods of choice without having to arbitrarily choose one of them. The MSA is delivered along with a local estimation of its consistency with the individual MSAs it was derived from. The computation of the consensus multiple alignment is carried out using a special mode of the T-Coffee package [Notredame, Higgins and Heringa (T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302: 205–217); Wallace, O'Sullivan, Higgins and Notredame (M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res. 2006; 34: 1692–1699)] Given a set of sequences (DNA or proteins) in FASTA format, M-Coffee delivers a multiple alignment in the most common formats. M-Coffee is a freeware open source package distributed under a GPL license and it is available either as a standalone package or as a web service from www.tcoffee.org

    Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee

    Get PDF
    Expresso is a multiple sequence alignment server that aligns sequences using structural information. The user only needs to provide sequences. The server runs BLAST to identify close homologues of the sequences within the PDB database. These PDB structures are used as templates to guide the alignment of the original sequences using structure-based sequence alignment methods like SAP or Fugue. The final result is a multiple sequence alignment of the original sequences based on the structural information of the templates. An advanced mode makes it possible to either upload private structures or specify which PDB templates should be used to model each sequence. Providing the suitable structural information is available, Expresso delivers sequence alignments with accuracy comparable with structure-based alignments. The server is available on http://www.tcoffee.or

    Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee

    Get PDF
    Expresso is a multiple sequence alignment server that aligns sequences using structural information. The user only needs to provide sequences. The server runs BLAST to identify close homologues of the sequences within the PDB database. These PDB structures are used as templates to guide the alignment of the original sequences using structure-based sequence alignment methods like SAP or Fugue. The final result is a multiple sequence alignment of the original sequences based on the structural information of the templates. An advanced mode makes it possible to either upload private structures or specify which PDB templates should be used to model each sequence. Providing the suitable structural information is available, Expresso delivers sequence alignments with accuracy comparable with structure-based alignments. The server is available on

    Pressure-Retaining Sampler and High-Pressure Systems to Study Deep-Sea Microbes Under in situ Conditions

    Get PDF
    The pelagic realm of the dark ocean is characterized by high hydrostatic pressure, low temperature, high-inorganic nutrients, and low organic carbon concentrations. Measurements of metabolic activities of bathypelagic bacteria are often underestimated due to the technological limitations in recovering samples and maintaining them under in situ environmental conditions. Moreover, most of the pressure-retaining samplers, developed by a number of different labs, able to maintain seawater samples at in situ pressure during recovery have remained at the prototype stage, and therefore not available to the scientific community. In this paper, we will describe a ready-to-use pressure-retaining sampler, which can be adapted to use on a CTD-carousel sampler. As well as being able to recover samples under in situ high pressure (up to 60 MPa) we propose a sample processing in equi-pressure mode. Using a piloted pressure generator, we present how to perform sub-sampling and transfer of samples in equi-pressure mode to obtain replicates and perform hyperbaric experiments safely and efficiently (with <2% pressure variability). As proof of concept, we describe a field application (prokaryotic activity measurements and incubation experiment) with samples collected at 3,000m-depth in the Mediterranean Sea. Sampling, sub-sampling, transfer, and incubations were performed under in situ high pressure conditions and compared to those performed following decompression and incubation at atmospheric pressure. Three successive incubations were made for each condition using direct dissolved-oxygen concentration measurements to determine the incubation times. Subsamples were collected at the end of each incubation to monitor the prokaryotic diversity, using 16S-rDNA/rRNA high-throughput sequencing. Our results demonstrated that oxygen consumption by prokaryotes is always higher under in situ conditions than after decompression and incubation at atmospheric pressure. In addition, over time, the variations in the prokaryotic community composition and structure are seen to be driven by the different experimental conditions. Finally, within samples maintained under in situ high pressure conditions, the active (16S rRNA) prokaryotic community was dominated by sequences affiliated with rare families containing piezophilic isolates, such as Oceanospirillaceae or Colwelliaceae. These results demonstrate the biological importance of maintaining in situ conditions during and after sampling in deep-sea environments

    Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients

    Get PDF
    Background: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. Methods and Findings: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01). We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p = 0.0197) or anorexic patients (p = 0.0332). The M. smithii concentration was much higher in anorexic patients than in the lean population (p = 0.0171). Conclusions: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population

    Enhanced pilot bioremediation of oily sludge from petroleum refinery disposal under hot-summer Mediterranean climate

    Get PDF
    Large pilot scale bioremediation approaches were implemented for the treatments of oily sludge (OS) characterised by alkaline pH (pH > 9), high concentration of metals (3% dry weight) and high total petroleum hydrocarbons content (TPH) rangingbetween 22,000 and 67,300 mg kg −1 from a Tunisian petroleum refinery. The treatments included bioaugmentation and biostimulation approaches with autochthonous isolated bacterial strains and consortia. Chemical, microbial, and ecotoxicological analyses were performed over a period of 180 days incubation. The bioremediation treatments favoured the development of Proteobacteria, Firmicutes and Bacteroidetes following an ecological succession of specialist bacterial groups, first associated to hydrocarbon degradation (e.g. Marinobacter and Alcanivorax) that resulted in a greater extent of TPH-degradation (up to 80%), and the selection of metal resistant bacteria including Hyphomonas, Phaeobacter, and Desulfuromusa. The best performances were obtained when bioaugmentation and biostimulation were combined. Over 90% of the TPH initial concentration was degraded over 180 days, which was accompanied with a 3-fold reduction of ecotoxicity. Our study demonstrates the efficacy of large pilot scale bioremediation of highly contaminated oily sludge, providing the evidence that the management of autochthonous microbial communities is of paramount importance for the success of the bioremediation process

    Genomotyping of Coxiella burnetii Using Microarrays Reveals a Conserved Genomotype for Hard Tick Isolates

    Get PDF
    C. burnetii is a Gram-negative intracellular Y-proteobacteria that causes the zoonotic disease Q fever. Q fever can manifest as an acute or chronic illness. Different typing methods have been previously developed to classify C. burnetii isolates to explore its pathogenicity. Here, we report a comprehensive genomotyping method based on the presence or absence of genes using microarrays. The genomotyping method was then tested in 52 isolates obtained from different geographic areas, different hosts and patients with different clinical manifestations. The analysis revealed the presence of 10 genomotypes organized into 3 groups, with a topology congruent with that obtained through multi-spacer typing. We also found that only 4 genomotypes were specifically associated with acute Q fever, whereas all of the genomotypes could be associated to chronic human infection. Serendipitously, the genomotyping results revealed that all hard tick isolates, including the Nine Mile strain, belong to the same genomotype

    Exploring Microbial Diversity Using 16S rRNA High-Throughput Methods

    No full text
    corecore