80 research outputs found
Dynamics of planar interface growth during directional solidification of alloys
The dynamics of plane front growth during directional solidification is investigated in a well-characterized system of succinonitrile-acetone, and the results show significant deviations from the predictions of existing models. This discrepancy is shown to arise from the assumption of solidification from one end in the theories that ignore the presence of an initial solute boundary layer generally present in experiments. A numerical model that relaxes this assumption is presented that gives excellent agreement with the experimental results.Fil: Fabietti, Luis Maria Rodolfo. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂa y FĂsica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂsica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂsica Enrique Gaviola; ArgentinaFil: Mazumder, P.. No especifĂca;Fil: Trivedi, R.. IOWA STATE UNIVERSITY (ISU)
Phase-Field Approach for Faceted Solidification
We extend the phase-field approach to model the solidification of faceted
materials. Our approach consists of using an approximate gamma-plot with
rounded cusps that can approach arbitrarily closely the true gamma-plot with
sharp cusps that correspond to faceted orientations. The phase-field equations
are solved in the thin-interface limit with local equilibrium at the
solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017
(1996)]. The convergence of our approach is first demonstrated for equilibrium
shapes. The growth of faceted needle crystals in an undercooled melt is then
studied as a function of undercooling and the cusp amplitude delta for a
gamma-plot of the form 1+delta(|sin(theta)|+|cos(theta)|). The phase-field
results are consistent with the scaling law "Lambda inversely proportional to
the square root of V" observed experimentally, where Lambda is the facet length
and V is the growth rate. In addition, the variation of V and Lambda with delta
is found to be reasonably well predicted by an approximate sharp-interface
analytical theory that includes capillary effects and assumes circular and
parabolic forms for the front and trailing rough parts of the needle crystal,
respectively.Comment: 1O pages, 2 tables, 17 figure
Evidences of +896 A/G TLR4 Polymorphism as an Indicative of Prevalence of Complications in T2DM Patients
T2DMis today considered as world-wide health problem, with complications responsible of an enhanced mortality and morbidity.
Thus, new strategies for its prevention and therapy are necessary. For this reason, the research interest has focused its attention
on TLR4 and its polymorphisms, particularly the rs4986790. However, no conclusive findings have been reported until now about
the role of this polymorphism in development of T2DM and its complications, even if a recent meta-analysis showed its T2DM
association in Caucasians. In this study, we sought to evaluate the weight of rs4986790 polymorphism in the risk of the major
T2DMcomplications, including 367 T2DMpatients complicated for the 55.6%. Patients with A/A and A/G TLR4 genotypes showed
significant differences in complication\u2019s prevalence. In particular, AG carriers had higher risk prevalence for neuropathy (P =
0.026), lower limb arteriopathy (P = 0.013), and the major cardiovascular pathologies (P = 0.017). Their cumulative risk was
significant (P = 0.01), with a threefold risk to develop neuropathy, lower limb arteriopathy, and major cardiovascular events in AG
cases compared to AA cases.The adjusted OR for the confounding variables was 3.788 (95% CI: 1.642\u20138.741).Thus, the rs4986790
polymorphism may be an indicative of prevalence of complications in T2DM patients
Population Physiology: Leveraging Electronic Health Record Data to Understand Human Endocrine Dynamics
Studying physiology and pathophysiology over a broad population for long periods of time is difficult primarily because collecting human physiologic data can be intrusive, dangerous, and expensive. One solution is to use data that have been collected for a different purpose. Electronic health record (EHR) data promise to support the development and testing of mechanistic physiologic models on diverse populations and allow correlation with clinical outcomes, but limitations in the data have thus far thwarted such use. For example, using uncontrolled population-scale EHR data to verify the outcome of time dependent behavior of mechanistic, constructive models can be difficult because: (i) aggregation of the population can obscure or generate a signal, (ii) there is often no control population with a well understood health state, and (iii) diversity in how the population is measured can make the data difficult to fit into conventional analysis techniques. This paper shows that it is possible to use EHR data to test a physiological model for a population and over long time scales. Specifically, a methodology is developed and demonstrated for testing a mechanistic, time-dependent, physiological model of serum glucose dynamics with uncontrolled, population-scale, physiological patient data extracted from an EHR repository. It is shown that there is no observable daily variation the normalized mean glucose for any EHR subpopulations. In contrast, a derived value, daily variation in nonlinear correlation quantified by the time-delayed mutual information (TDMI), did reveal the intuitively expected diurnal variation in glucose levels amongst a random population of humans. Moreover, in a population of continuously (tube) fed patients, there was no observable TDMI-based diurnal signal. These TDMI-based signals, via a glucose insulin model, were then connected with human feeding patterns. In particular, a constructive physiological model was shown to correctly predict the difference between the general uncontrolled population and a subpopulation whose feeding was controlled
Cell-free DNA testing in the maternal blood in high-risk pregnancies after first-trimester combined screening
Objective: The objective of this study was to investigate a strategy for clinical implementation of cell-free DNA (cfDNA) testing in high-risk pregnancies after first-trimester combined screening. Methods: In 259 singleton pregnancies undergoing invasive testing after first-trimester combined screening, a maternal blood sample was sent to the laboratory Natera for cfDNA testing using a single-nucleotide polymorphism-based methodology. Results: The cfDNA test provided a result in 249 (96.1%) pregnancies and, among these, identified as being at high risk 35 of 36 cases of trisomy 21, 13 of 13 with trisomy 18, five of five with trisomy 13 and three of four with sex chromosome aneuploidies. A policy of performing an invasive test in women with a combined risk of 651 in 10 or NT 654mm and offering cfDNA testing to the remaining cases would detect all cases of trisomy 21, 18 or 13, 80% of sex aneuploidies and 62.5% of other defects and would avoid an invasive procedure in 82.4% of euploid fetuses. Conclusion: In high-risk pregnancies after combined screening, a policy of selecting a subgroup for invasive testing and another for cfDNA testing would substantially reduce the number of invasive procedures and retain the ability to diagnose most of the observed aneuploidies
Surface effects in nucleation and growth of smectic B crystals in thin samples
We present an experimental study of the surface effects (interactions with
the container walls) during the nucleation and growth of smectic B crystals
from the nematic in free growth and directional solidification of a mesogenic
molecule () called CCH4 in thin (of thickness in the 10
m range) samples. We follow the dynamics of the system in real time with a
polarizing microscope. The inner surfaces of the glass-plate samples are coated
with polymeric films, either rubbed polyimid (PI) films or monooriented
poly(tetrafluoroethylene) (PTFE) films deposited by friction at high
temperature. The orientation of the nematic and the smectic B is planar. In
PI-coated samples, the orientation effect of SmB crystals is mediated by the
nematic, whereas, in PTFE-coated samples, it results from a homoepitaxy
phenomenon occurring for two degenerate orientations. A recrystallization
phenomenon partly destroys the initial distribution of crystal orientations. In
directional solidification of polycrystals in PTFE-coated samples, a particular
dynamics of faceted grain boundary grooves is at the origin of a dynamical
mechanism of grain selection. Surface effects also are responsible for the
nucleation of misoriented terraces on facets and the generation of lattice
defects in the solid.Comment: 15 pages, 24 figures, submitted to PR
Observer-Based State Feedback for Enhanced Insulin Control of Type âIâ Diabetic Patients
During the past few decades, biomedical modeling techniques have been applied to improve performance of a wide variety of medical systems that require monitoring and control. Diabetes is one of the most important medical problems. This paper focuses on designing a state feedback controller with observer to improve the performance of the insulin control for type âIâ diabetic patients. The dynamic model of glucose levels in diabetic patients is a nonlinear model. The system is a typical fourth-order single-input-single-output state space model. Using a linear time invariant controller based on an operating condition is a common method to simplify control design. On the other hand, adaptive control can potentially improve system performance. But it increases control complexity and may create further stability issues. This paper investigates patient models and presents a simplified control scheme using observer-based feedback controllers. By comparing different control schemes, it shows that a properly designed state feedback controller with observer can eliminate the adaptation strategy that the Proportional-Integral-Derivative (PID) controllers need to improve the control performance. Control strategies are simulated and their performance is evaluated in MATLAB and Simulink
Advances in research on the use of biochar in soil for remediation: a review
Purpose: Soil contamination mainly from human activities remains a major environmental problem in the contemporary world. Significant work has been undertaken to position biochar as a readily-available material useful for the management of contaminants in various environmental media notably soil. Here, we review the increasing research on the use of biochar in soil for the remediation of some organic and inorganic contaminants. Materials and methods: Bibliometric analysis was carried out within the past 10 years to determine the increasing trend in research related to biochar in soil for contaminant remediation. Five exemplar contaminants were reviewed in both laboratory and field-based studies. These included two inorganic (i.e., As and Pb) and three organic classes (i.e., sulfamethoxazole, atrazine, and PAHs). The contaminants were selected based on bibliometric data and as representatives of their various contaminant classes. For example, As and Pb are potentially toxic elements (anionic and cationic, respectively), while sulfamethoxazole, atrazine, and PAHs represent antibiotics, herbicides, and hydrocarbons, respectively. Results and discussion: The interaction between biochar and contaminants in soil is largely driven by biochar precursor material and pyrolysis temperature as well as some characteristics of the contaminants such as octanol-water partition coefficient (KOW) and polarity. The structural and chemical characteristics of biochar in turn determine the major sorption mechanisms and define biocharâs suitability for contaminant sorption. Based on the reviewed literature, a soil treatment plan is suggested to guide the application of biochar in various soil types (paddy soils, brownfield, and mine soils) at different pH levels (4â5.5) and contaminant concentrations (â50 mg kgâ1). Conclusions: Research on biochar has grown over the years with significant focus on its properties, and how these affect biocharâs ability to immobilize organic and inorganic contaminants in soil. Few of these studies have been field-based. More studies with greater focus on field-based soil remediation are therefore required to fully understand the behavior of biochar under natural circumstances. Other recommendations are made aimed at stimulating future research in areas where significant knowledge gaps exist
Experimental studies of the kaon-nucleus interaction at low energy with x-ray spectroscopy of kaonic atoms
In the exotic atoms in which one electron is replaced by a negatively charged kaon, the kaon-nucleus hadronic interaction introduces an energy shift and broadening of the low-lying states of the kaonic atoms. The shift and width can be determined with high precision from the atomic x-ray spectroscopy, and this experimental method provides unique information to understand the low energy kaon-nucleus interaction at the production threshold
- âŠ