

Home Search Collections Journals About Contact us My IOPscience

Progress and perspectives in the low-energy kaon-nucleon/nuclei interaction studies at the DAΦNE collider

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 J. Phys.: Conf. Ser. 556 012004 (http://iopscience.iop.org/1742-6596/556/1/012004) View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.225.1.226 This content was downloaded on 06/01/2015 at 07:38

Please note that terms and conditions apply.

Progress and perspectives in the low-energy kaon-nucleon/nuclei interaction studies at the $DA\Phi NE$ collider

M. Iliescu¹, M. Bazzi¹, G. Beer², C. Berucci^{1,6}, D. Bosnar¹², A.M. Bragadireanu⁵, M. Cargnelli⁶, C.Curceanu¹, A. d'Uffizi¹, L. Fabietti¹⁰, C. Fiorini^{3,4}, F. Ghio⁷, C. Guaraldo¹, R.S. Hayano⁸, T. Ishiwatari⁶, M. Iwasaki⁹, J. Marton⁶, S. Okada⁹, D. Pietreanu⁵, K. Piscicchia¹, M. Poli Lener¹, T. Ponta⁵, R. Quaglia^{3,4}, A. Romero Vidal¹¹, P. Levi Sandri¹, E. Sbardella¹, F Schembari³, A. Scordo¹, H. Shi⁸, D.L. Sirghi^{1,5}, F. Sirghi^{1,5}, H. Tatsuno⁹, I. Tucakovic¹, O. Vazquez Doce¹⁰, E. Widmann⁶, B. Wünschek⁶ and J. Zmeskal⁶ 1 INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Roma), Italy 2 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada 3 Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy 4 INFN Sezione di Milano, Milano, Italy 5 Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania 6 Stefan-Meyer-Institut für subatomare Physik, Vienna, Austria 7 INFN Sezione di Roma I and Istituto Superiore di Sanità, Roma, Italy 8 The University of Tokyo, Tokyo, Japan 9 RIKEN, The Institute of Physics and Chemical Research, Saitama, Japan 10 Technische Universität München, Physik Department, Garching, Germany 11 University of Santiago de Compostela, Santiago de Compostela, Spain 12 University of Zagreb, Zagreb, Croatia (SIDDHARTA, SIDDHARTA-2 and AMADEUS collaborations) E-mail: Mihai.Iliescu@lnf.infn.it

Abstract. Low-energy QCD is still lacking experimental results, fundamental for reaching a good understanding of the strangeness sector. The information provided by the low energy kaonnucleon/nuclei interaction is accessible through the study of kaonic atoms and kaonic nuclear processes. The lightest atomic systems, namely the kaonic hydrogen and the kaonic deuterium, provide the isospin dependent kaon-nucleon scattering lengths by measuring the X-rays emitted during their de-excitation to the 1s level. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium and of upper-level transitions in kaonic helium 3 and kaonic helium 4 were carried out at the $DA\Phi NE$ collider by the SIDDHARTA collaboration. Presently, a significantly upgraded setup developped by the SIDDHARTA-2 collaboration is ready to perform a precise measurement of kaonic deuterium and, afterwards, of heavier exotic atoms. In parallel, the kaon-nuclei interaction at momenta below 130 MeV/c is studied by the AMADEUS collaboration, using the KLOE detector and a dedicated setup inserted in the central region, near the interaction point. Preliminary results of the study of charged antikaons interacting with nuclei are shown, including an analysis of the controversial $\Lambda(1405)$.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution (i) (cc) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

XI International Conference on Hyperons,	Charm and Beauty Hadrons	(BEACH 2014)	IOP Publishing
Journal of Physics: Conference Series 556	(2014) 012004	doi:10.1088/1742	2-6596/556/1/012004

1. Introduction

Reliable information on $\bar{K}N$ interaction at threshold was provided only in the 1990s by measuring the strong-interaction energy shift ϵ and width Γ of kaonic-hydrogen 1s state, at KEK-PS in Japan [1] and afterwards, at DAFNE in Italy [2]. From the two values, the K^-p scattering length was extracted, using a Deser-Trueman-like formula [3], lately improved to account for the isospin-breaking corrections [4]. The measurement allowed a consistent interpretation of the scattering data [5] and the calculation of chiral SU(3) meson-baryon effective Lagrangian. However, sub-threshold amplitudes were extrapolated with large uncertainties due to the experimental precision. Recently, the SIDDHARTA collaboration obtained more accurate values for both ϵ and Γ for kaonic hydrogen, thus providing stronger constraints on the theoretical models. The new data also motivated novel calculations regarding the structure of $\Lambda(1405)$ and theoretical investigations about the existence of kaonic nuclear clusters [6], both topics now under experimental study within the AMADEUS collaboration.

2. SIDDHARTA experiment

The SIDDHARTA experiment was performed at the upgraded DA Φ NE e^+e^- collider in Frascati, Italy [7]. The beam energy is tuned to create ϕ mesons, which decay in K^+K^- pairs with a BR of 49.1%. The monochromatic, low-energy charged kaons are degraded, then stopped in a cryogenic gaseous target, producing kaonic atoms. The target is a critical item, the yields of kaonic atom X-rays decreasing sensitively with the gas density, due to Stark mixing. On the other hand, a low density does not permit efficient stopping and increases the kaons in-flight decay. For the SIDDHARTA optimized density, the yield was ~ 1% when filled with hydrogen and will presumably drop to ~ 0.1% for deuterium. The trigger was given by K^-K^+ coincident hits on fast scintillators. The kaonic atom X-rays were detected with 144 silicon drift X-ray detectors (SDDs), 1 cm² each, surrounding the target. The SDDs, developed by the collaboration, have an energy resolution of 180 eV FWHM at 6 keV, while their time response is below 800 ns FWHM. The trigger signal and the fast X-ray detectors confered a high background rejection, most of the background deriving from beam losses, uncorrelated with the Φ production.

2.1. SIDDHARTA results and ongoing upgrade

The data analysis used a global fit of both hydrogen and deuterium X-ray spectra to extract ϵ and Γ , thus improving the background subtraction. The fit lines are indicated in Fig. 1. The kaonic-hydrogen X-ray transitions were clearly observed, while kaonic deuterium ones were not. This agrees with the theoretical predictions, indicating one order of magnitude lower yield [8]. The repulsive-type shift observed is in agreement with the K^-p scattering data. Other characteristic X-rays, coming from the calibration foils and from the setup components, as well as Xrays from heavier kaonic-atoms produced in the target wall, were properly identified. The details of the analysis and the setup description are given in [9]. The fit results for the 1s strong-interaction shift and width in kaonic hydrogen are

$$\epsilon = -283 \pm 36(\text{stat}) \pm 6(\text{syst}) \text{ eV}$$

and
 $\Gamma = 541 \pm 89(\text{stat}) \pm 22(\text{syst}) \text{ eV},$

respectively. The values are in agreement with the recent theoretical works [10], so yielding important constraints on the description of low-energy $\bar{K}N$ interactions [6]. Still, the full determination of the isospin-dependent $\bar{K}N$ scattering lengths requires a second measurement, namely the shift and the width of kaonic-deuterium 1s state. Therefore, the SIDDHARTA-2 experiment is being prepared to measure the -one order of magnitude lower yield- kaonic deuterium X-rays, by significantly improving the signal to background ratio [11]. The full results will grant an important progress of the theoretical interpretation.

Figure 1. Global fit of the X-ray spectra from kaonic hydrogen (a) and kaonic deuterium (b). The dot-dashed vertical line indicates the EM energy of the kaonic-hydrogen $K\alpha$ X-ray.

3. AMADEUS

A research line complementary to that of exotic atoms, the AMADEUS experiment at DA Φ NE deals with the investigation of low-energy kaon-nucleon/nuclei hadronic interaction inside the nucleus. For that purpose, signals from K⁻ absorption at rest and in flight (with momenta below 127 MeV/c), are investigated using a sample of 1.4 fb⁻¹ from the KLOE experiment data. In a first phase, components of the detector [12], like the gas filling the drift chamber (mainly ⁴He) and the drift chamber wall (mainly ¹²C), were used as active targets. The interpretation of the data will allow extracting qualitative and quantitative outputs for the search of kaonic nuclear clusters [13] and a new study of the debated $\Lambda(1405)$ resonance [6], to be added to the pp and heavy ion collisions data.

Figure 2. Left: Ap invariant mass for the inclusive Ap selection (continuous line) and for events with an extra π^- detected (dashed line). Right: $\Sigma^0 \pi^0$ invariant mass (dashed and pointed lines represent the at-rest and in-flight components, respectively).

The invariant mass spectra for the Λp inclusive selection (expected decay channel of a K^-pp cluster) is shown in the left part of Fig. 2 for the ⁴He events. The low invariant mass region is populated mainly by events coming from the single nucleon absorption (1NA) process, the proton in the final state coming from the participant nucleons trough the Σ/Λ nuclear conversion taking place inside the residual nucleus. The 1NA process is characterized by an additional negative pion in the final state. This subsample is represented by the dashed line in Fig. 2 (left), with arbitrary normalization, to be compared with the full spectrum. The ongoing analysis of Lambda-baryon channels will further provide the fraction of single/multi nucleon absorption, as well as the rates of nuclear Σ/Λ conversion for the given energy range.

XI International Conference on Hyperons, Charm and Beauty Hadron	as (BEACH 2014)	IOP Publishing
Journal of Physics: Conference Series 556 (2014) 012004	doi:10.1088/1742	-6596/556/1/012004

For the study of the $\Lambda(1405)$, the $\Sigma^0 \pi^0$ decay channel has been analyzed. The invariant mass distribution for events in ¹²C, shown in the right part of Fig. 2, exhibits a significant fraction of events above the kinematical limit of the K⁻ absorption at rest (1416 MeV/c²). A similar behaviour, explained by the small difference in the last nucleon's binding energies, was observed on ⁴He. Consequently, the data set was split into in-flight and at rest candidate events. Further analysis indicates both distributions have a two-component structure; the lower momentum one correlated with high masses and vice versa. The ongoing work in extracting the resonant and non-resonant parts and the characterization of the line shapes of the resonance is important to correctly interpret the results and compare them to theoretical models.

Acknowledgments

We thank C.Capoccia, G.Corradi, B.Dulach and D.Tagnani from LNF-INFN and H.Schneider, L.Stohwasser, and D.Stückler from Stefan-Meyer-Institut for their fundamental contribution in designing and building the SIDDHARTA setup. We thank as well the DAΦNE staff for the fine working conditions and permanent support. Part of this work was supported by Hadron Physics I3 FP6 European Community program, Contract No.RII3 CT-2004-506078; the European Community-Research Infrastructure Integrating Activity Study of Strongly Interacting Matter (Hadron Physics 2, Grant Agreement No.227431 and HadronPhysics 3, Contract No.283286 under the Seventh Framework Programme of EU); Austrian Federal Ministry of Science and Research BMBWK 650962/0001 VI/2/2009; Romanian National Authority for Scientific Research,Contract No.2-CeX 06-11-11/2006; the Grant in-Aid for Specially Promoted Research (20002003), MEXT, Japan; the Austrian Science Fund (FWF):[P20651-N20]; and the DFG Excellence Cluster Universe of the Technische Universität München.

References

- M. Iwasaki *et al.*: Observation of the kaonic hydrogen K(alpha) x-ray. Phys. Rev. Lett. 78, 3067-3069 (1997).
 T.M. Ito *et al.*: Observation of kaonic hydrogen atom x rays. Phys. Rev. C 58 2366-2382 (1998).
- [2] G. Beer et al.: Measurement of the kaonic hydrogen X-ray spectrum. DEAR Collaboration, Phys. Rev. Lett. 94 212302 (2005).
- [3] S. Deser et al.: Energy level displacements in pi mesonic atoms. Phys. Rev. 96 774-776 (1954). T.L. Trueman: Energy level shifts in atomic states of strongly-interacting particles. Nucl. Phys. 26, 57-67 (1961). A. Deloff
 : S Matrix Approach to Hadronic Atom Level Shifts. Phys. Rev. C 13, 730-736 (1976).
- [4] U.-G. Meißner, U. Raha, A. Rusetsky : Spectrum and decays of kaonic hydrogen. Eur. Phys. J. C 35, 349-357 (2004). A. Cieplý, J. Smejkal : Kaonic hydrogen versus the K-p low-energy data. Eur. Phys. J. A 34, 237-241 (2007).
- [5] A.D. Martin: Kaon Nucleon Parameters. Nucl. Phys. B 179, 33-48 (1981). D.N. Tovee et al. : Some properties of the charged sigma hyperons. Nucl. Phys. B 33, 493-504 (1971). R.J. Nowak et al. : Charged Sigma Hyperon Production by K- Meson Interactions at Rest. Nucl. Phys. B 139, 61-71 (1978).
- [6] A. Cieplý et al.: Chirally motivated K⁻ nuclear potentials. Phys. Lett. B 702, 402-407 (2011). Y. Ikeda, T. Hyodo, W. Wise: Improved constraints on chiral SU(3) dynamics from kaonic hydrogen. Phys. Lett. B 706, 63-67 (2011). Y. Ikeda, T. Hyodo, W. Wise: Chiral SU(3) theory of antikaonnucleon interactions with improved threshold constraints. Nucl. Phys. A 881, 98-114 (2012).
- [7] M. Boscolo et al. : Description and performances of luminosity and background detectors at the upgraded e+e-DAFNE collider. Nucl. Instrum. Methods Phys. Res. A 621, 157-170 (2010).
- [8] T. Koike, T. Harada, Y. Akaishi : Cascade calculation of K-p and K-d atoms. Phys. Rev. C 53, 79-87 (1996).
- [9] M. Bazzi et al. : A new measurement of kaonic hydrogen X-rays. SIDDHARTA Collaboration, Phys. Lett. B 704, 113-117 (2011). M. Bazzi et al. : Kaonic hydrogen X-ray measurement in SIDDHARTA. SIDDHARTA Collaboration, Nucl. Phys. A 881, 88-97 (2012).
- B. Borasoy, R. Nißler, W. Weise : Kaonic Hydrogen and K-p Scattering. Phys. Rev. Lett. 94, 213401 (2005).
 B. Borasoy, U.-G. Meißner, R. Nißler : K-p scattering length from scattering experiments. Phys. Rev. C 74, 055201 (2006).
- [11] SIDDHARTA-2 Collaboration, Proposal of Laboratori Nazionali di Frascati of INFN (2010).
- [12] M. Adinolfi et al.: The tracking detector of the KLOE experiment, Nucl. Instr. Meth. A 488, 51-73 (2002).
- [13] Y. Akaishi and T. Yamazaki: Emission spectra and invariant masses of Λ and p in the stopped-K⁻NN absorption process in ⁴He and ⁶Li, Nucl. Phys. A 792, 229 (2007).