55 research outputs found

    On fan-shaped cold MHD winds from Keplerian accretion discs

    Full text link
    We investigate under which conditions cold, fan-shaped winds can be steadily launched from thin (Keplerian) accretion discs. Such winds are magneto-centrifugal winds launched from a thin annulus in the disc, along open magnetic field lines that fan out above the disc. In principle, such winds could be found in two situations: (1) at the interface between an inner Jet Emitting Disc, which is itself powering magneto-centrifugally driven winds, and an outer standard accretion disc; (2) at the interface between an inner closed stellar magnetosphere and the outer standard accretion disc. We refer to Terminal or T-winds to the former kind and to Magnetospheric or M-winds to the latter. The full set of resistive and viscous steady state MHD equations are analyzed for the disc (the annulus), which allow us to derive general expressions valid for both configurations. We find that, under the framework of our analysis, the only source of energy able to power any kind of fan-shaped winds is the viscous transport of rotational energy coming below the inner radii. Using standard local α\alpha prescriptions for the anomalous (turbulent) transport of angular momentum and magnetic fields in the disc, we derive the strength of the transport coefficients that are needed to steadily sustain the global configuration. It turns out that, in order for these winds to be dynamically relevant and explain observed jets, the disc coefficients must be far much larger than values expected from current knowledge of turbulence occurring inside proto-stellar discs. Either the current view on MHD turbulence must be deeply reconsidered or steady-state fan-shaped winds are never realized in Nature. The latter hypothesis seems to be consistent with current numerical simulations.Comment: Among several possibilites, this paper addresses also the case of the X-wind Accepted for publication in MNRA

    Magnetized accretion-ejection structures V. Effects of entropy generation inside the disc

    Get PDF
    In this paper, steady-state MHD calculations of non-relativistic magnetized accretion discs driving jets are presented. For the first time, an energy equation describing the effects of entropy generation along streamlines is included. Using a simplified approach, we showed that thermal effects have a tremendous influence on the disc capability to feed jets with mass. The disc ejection efficiency is measured by the parameter ξ=dlnM˙a/dlnr\xi= d \ln \dot{M}_{a}/d \ln{r}, where M˙a(r) \dot{M}_{a}(r) is the local disc accretion rate. While previous self-similar solutions were only able to produce jets with ξ0.01\xi \sim 0.01, solutions with a coronal heating display huge efficiencies up to ξ0.5\xi \sim 0.5. Moreover, taking thermal effects into account allows to obtain both fast and slow magnetic rotators. Since most of the jet properties (like asymptotic velocity or degree of collimation) depend on the mass load, it arises from this study that any quantitative result requires a detailled analysis of the disc energetics.Comment: 14 pages, 10 figures. Accepted for publication by A&A main journa

    Two-flow magnetohydrodynamical jets around young stellar objects

    Full text link
    We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.Comment: Accepted for publication in Astrophysics & Space Science. Referred proceeding of the fifth Mont Stromlo Symposium Dec. 1-8 2006, Canberra, Australia. 5 pages, 3 figures. For high resolution version of the paper, please click here http://www.apc.univ-paris7.fr/~fcasse/publications.htm

    Inner disk regions revealed by infrared interferometry

    Full text link
    I review the results obtained by long-baseline interferometry at infrared wavelengths on the innermost regions around young stars. These observations directly probe the location of the dust and gas in the disks. The characteristic sizes of these regions found are larger than previously thought. These results have motivated in part a new class of models of the inner disk structure. However the precise understanding of the origin of these low visibilities is still in debate. Mid-infrared observations have probed disk emission over a larger range of scales revealing mineralogy gradients in the disk. Recent spectrally resolved observations allow the dust and gas to be studied separately. The few results shows that the Brackett gamma emission can find its origin either in a wind or in a magnetosphere but there are no definitive answers yet. In a certain number of cases, the very high spatial resolution seems to reveal very close companions. In any case, these results provide crucial information on the structure and physical properties of disks surrounding young stars especially as initial conditions for planet formation.Comment: 11 page

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass

    Using PIC and PIC-MHD to investigate cosmic ray acceleration in mildly relativistic shocks

    Full text link
    Astrophysical shocks create cosmic rays by accelerating charged particles to relativistic speeds. However, the relative contribution of various types of shocks to the cosmic ray spectrum is still the subject of ongoing debate. Numerical studies have shown that in the non-relativistic regime, oblique shocks are capable of accelerating cosmic rays, depending on the Alfv\'enic Mach number of the shock. We now seek to extend this study into the mildly relativistic regime. In this case, dependence of the ion reflection rate on the shock obliquity is different compared to the nonrelativistic regime. Faster relativistic shocks are perpendicular for the majority of shock obliquity angles therefore their ability to initialize efficient DSA is limited. We define the ion injection rate using fully kinetic PIC simulation where we follow the formation of the shock and determine the fraction of ions that gets involved into formation of the shock precursor in the mildly relativistic regime covering a Lorentz factor range from 1 to 3. Then, with this result, we use a combined PIC-MHD method to model the large-scale evolution of the shock with the ion injection recipe dependent on the local shock obliquity. This methodology accounts for the influence of the self-generated or pre-existing upstream turbulence on the shock obliquity which allows study substantially larger and longer simulations compared to classical hybrid techniques.Comment: 38th International Cosmic Ray Conference, Proceedings of Science (ICRC2023) 54

    Astroparticle yield and transport from extragalactic jet terminal shocks

    Full text link
    The present paper deals with the yield and transport of high-energy particle within extragalactic jet terminal shocks, also known as hotspots. We investigate in some details the cosmic ray, neutrinos and high-energy photons yield in hotspots of powerful FRII radio-galaxies by scanning all known spatial transport regimes, adiabatic and radiative losses as well as Fermi acceleration process. Since both electrons and cosmic rays are prone to the same type of acceleration, we derive analytical estimates of the maximal cosmic ray energy attainable in both toroidal and poloidal magnetic field dominated shock structures by using observational data on synchrotron emission coming from various hot-spots. One of our main conclusions is that the best hot-spot candidates for high energy astroparticle production is the extended (LHS1kpcL_{HS}\geq 1kpc), strongly magnetized (B>0.1mGB> 0.1mG) terminal shock displaying synchrotron emission cut-off lying at least in the optical band. We found only one object (3C273A) over the six objects in our sample being capable to produce cosmic rays up to 102010^{20} eV. Secondly, we investigate the astroparticle spectra produced by two characteric hot-spots (Cygnus A and 3C273 A) by applying a multi-scale MHD-kinetic scheme, coupling MHD simulations to kinetic computations using stochastic differential equations. We show that 3C273 A, matching the previous properties, may produce protons up to 102010^{20} eV in a Kolmogorov type turbulence by both computing electron and cosmic ray acceleration. We also calculate the high-energy neutrino and gamma-ray fluxes on Earth produced through p-γ\gamma and p-p processes and compare them to the most sensitive astroparticle experiments.Comment: To be published in Astroparticle Physic

    Radiatively inefficient MHD accretion-ejection structures

    Full text link
    We present magnetohydrodynamic simulations of a resistive accretion disk continuously launching transmagnetosonic, collimated jets. We time-evolve the full set of magnetohydrodynamic equations, but neglect radiative losses in the energetics (radiatively inefficient). Our calculations demonstrate that a jet is self-consistently produced by the interaction of an accretion disk with an open, initially bent large-scale magnetic field. A constant fraction of heated disk material is launched in the inner equipartition disk regions, leading to the formation of a hot corona and a bright collimated, super-fastmagnetosonic jet. We illustrate the complete dynamics of the ``hot'' near steady-state outflow (where thermal pressure \simeq magnetic pressure) by showing force balance, energy budget and current circuits. The evolution to this near stationary state is analyzed in terms of the temporal variation of energy fluxes controlling the energetics of the accretion disk. We find that unlike advection-dominated accretion flow, the energy released by accretion is mainly sent into the jet rather than transformed into disk enthalpy. These magnetized, radiatively inefficient accretion-ejection structures can account for under-luminous thin disks supporting bright fast collimated jets as seen in many systems displaying jets (for instance M87).Comment: Astrophysical Journal (in press). Figures are missing due to file size restrictions. To have the complete paper just click on http://www-laog.obs.ujf-grenoble.fr/~fcasse/MS56638.pd

    Transport of Cosmic Rays in Chaotic Magnetic Fields

    Get PDF
    The transport of charged particles in disorganised magnetic fields is an important issue which concerns the propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary, interstellar and even extra-galactic media, as well as the efficiency of Fermi acceleration processes. We have performed detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the extrapolation to high turbulence levels of the scaling predicted by the quasi-linear approximation for the scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by the quasi-linear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the acceleration of high energy cosmic rays in supernovae remnants, in super-bubbles, and in jets and hot spots of powerful radio-galaxies.Comment: To be published in Physical Review D, 20 pages 9 figure
    corecore