16 research outputs found

    Validation of the content of the prevention protocol for early sepsis caused by Streptococcus agalactiaein newborns

    Get PDF
    AbstractObjective: to validate the content of the prevention protocol for early sepsis caused by Streptococcus agalactiaein newborns.Method: a transversal, descriptive and methodological study, with a quantitative approach. The sample was composed of 15 judges, 8 obstetricians and 7 pediatricians. The validation occurred through the assessment of the content of the protocol by the judges that received the instrument for data collection - checklist - which contained 7 items that represent the requisites to be met by the protocol. The validation of the content was achieved by applying the Content Validity Index.Result: in the judging process, all the items that represented requirements considered by the protocol obtained concordance within the established level (Content Validity Index > 0.75). Of 7 items, 6 have obtained full concordance (Content Validity Index 1.0) and the feasibility item obtained a Content Validity Index of 0.93. The global assessment of the instruments obtained a Content Validity Index of 0.99.Conclusion: the validation of content that was done was an efficient tool for the adjustment of the protocol, according to the judgment of experienced professionals, which demonstrates the importance of conducting a previous validation of the instruments. It is expected that this study will serve as an incentive for the adoption of universal tracking by other institutions through validated protocols

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Hypercaloric Diet Establishes Erectile Dysfunction in Rat: Mechanisms Underlying the Endothelial Damage

    No full text
    Obesity is characterized by an excessive increase in body mass, leading to endothelial damage that may favor the development of erectile dysfunction (ED). ED is defined as the inability to achieve or maintain a penile erection long enough to have a sexual intercourse. In this context, different ED models were developed, however the high price of special animals or the long period to establish the disease has limited studies in this field. Therefore, this study proposed to establish and characterize a novel model of ED in rats associated to a hypercaloric diet consumption. Animals were randomly divided into control group (CG), which received a standard diet, and obese group (OG), fed with a hypercaloric diet during 8 weeks. Rat's erectile function was evaluated in vivo and in vitro. Food and caloric intake of OG were reduced compared to CG, due to an increased diet energy efficiency. However, OG presented an increased body mass, inguinal, retroperitoneal and epididymal adipose tissues, as well as body adiposity index at the end of experimental protocol. In erectile function analysis, there was a decrease in the number and the latency of penile erections in OG. Additionally, the contractile reactivity of corpus cavernosum was increased in OG, favoring penile detumescence and related to a reduced nitric oxide bioavailability and an increased in contractile prostaglandins levels as a consequence of endothelial damage. Moreover, the endothelium-relaxation reactivity of corpus cavernosum was attenuated in OG associated to the oxidative stress. Thus, it was provided a model for advances in sexual dysfunction field and drug discovery for ED treatment

    Mechanisms Underlying Vasorelaxation Induced in Rat Aorta by Galetin 3,6-Dimethyl Ether, a Flavonoid from Piptadenia stipulacea (Benth.) Ducke

    No full text
    In this study, we investigated the relaxant action of galetin 3,6-dimethyl ether (FGAL) on rat aorta. The flavonoid relaxed both PMA‑ and phenylephrine (Phe)-induced contractions (pD2 = 5.36 ± 0.11 and 4.17 ± 0.10, respectively), suggesting the involvement of PKC and Phe pathways or α1 adrenergic receptor blockade. FGAL inhibited and rightward shifted Phe-induced cumulative contraction‑response curves, indicating a noncompetitive antagonism of α1 adrenergic receptors. The flavonoid was more potent in relaxing 30 mM KCl- than 80 mM KCl-induced contractions (pD2 = 5.50 ± 0.22 and 4.37 ± 0.12). The vasorelaxant potency of FGAL on Phe-induced contraction was reduced in the presence of 10 mM TEA+. Furthermore, in the presence of apamin, glibenclamide, BaCl2 or 4-AP, FGAL-induced relaxation was attenuated, indicating the participation of small conductance calcium-activated K+ channels (SKCa), ATP-sensitive K+ channels (KATP), inward rectifier K+ channels (Kir) and voltage-dependent K+ channels (KV), respectively. FGAL inhibited and rightward shifted CaCl2-induced cumulative contraction-response curves in both depolarizing medium (high K+) and in the presence of verapamil and phenylephrine, suggesting inhibition of Ca2+ influx through voltage-gated calcium channels (CaV) and receptor operated channels (ROCs), respectively. Likewise, FGAL inhibited Phe-induced contractions in Ca2+-free medium, indicating inhibition of Ca2+ release from the sarcoplasmic reticulum (SR). FGAL potentiated the relaxant effect of aminophylline and sildenafil but not milrinone, suggesting the involvement of phosphodiesterase V (PDE V). Thus, the FGAL vasorelaxant mechanism involves noncompetitive antagonism of α1 adrenergic receptors, the non-selective opening of K+ channels, inhibition of Ca2+ influx through CaV or ROCs and the inhibition of intracellular Ca2+ release. Additionally, there is the involvement of cyclic nucleotide pathway, particularly through PDE V inhibition

    Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma

    No full text
    Asthma is a chronic inflammatory disease of the airways related to epithelial damage, bronchial hyperresponsiveness to contractile agents, tissue remodeling, and luminal narrowing. Currently, there are many data about the pathophysiology of asthma; however, a new aspect has emerged related to the influence of reactive oxygen and nitrogen species (ROS and RNS) on the origin of this disease. Several studies have shown that an imbalance between the production of ROS and RNS and the antioxidant enzymatic and nonenzymatic systems plays an important role in the pathogenesis of this disease. Considering this aspect, this study is aimed at gathering data from the scientific literature on the role of oxidative distress in the development of inflammatory airway and lung diseases, especially bronchial asthma. For that, articles related to these themes were selected from scientific databases, including human and animal studies. The main findings of this work showed that the respiratory system works as a highly propitious place for the formation of ROS and RNS, especially superoxide anion, hydrogen peroxide, and peroxynitrite, and the epithelial damage is reflected in an important loss of antioxidant defenses that, in turn, culminates in an imbalance and formation of inflammatory and contractile mediators, such as isoprostanes, changes in the activity of protein kinases, and activation of cell proliferation signalling pathways, such as the MAP kinase pathway. Thus, the oxidative imbalance appears as a promising path for future investigations as a therapeutic target for the treatment of asthmatic patients, especially those resistant to currently available therapies

    Virgin Coconut Oil Supplementation Prevents Airway Hyperreactivity of Guinea Pigs with Chronic Allergic Lung Inflammation by Antioxidant Mechanism

    No full text
    Asthma is a chronic inflammatory disease of the airways characterized by immune cell infiltrates, bronchial hyperresponsiveness, and declining lung function. Thus, the possible effects of virgin coconut oil on a chronic allergic lung inflammation model were evaluated. Morphology of lung and airway tissue exhibited peribronchial inflammatory infiltrate, epithelial hyperplasia, and smooth muscle thickening in guinea pigs submitted to ovalbumin sensitization, which were prevented by virgin coconut oil supplementation. Additionally, in animals with lung inflammation, trachea contracted in response to ovalbumin administration, showed a greater contractile response to carbachol (CCh) and histamine, and these responses were prevented by the virgin coconut oil supplementation. Apocynin, a NADPH oxidase inhibitor, did not reduce the potency of CCh, whereas tempol, a superoxide dismutase mimetic, reduced potency only in nonsensitized animals. Catalase reduced the CCh potency in nonsensitized animals and animals sensitized and treated with coconut oil, indicating the participation of superoxide anion and hydrogen peroxide in the hypercontractility, which was prevented by virgin coconut oil. In the presence of L-NAME, a nitric oxide synthase (NOS) inhibitor, the CCh curve remained unchanged in nonsensitized animals but had increased efficacy and potency in sensitized animals, indicating an inhibition of endothelial NOS but ineffective in inhibiting inducible NOS. In animals sensitized and treated with coconut oil, the CCh curve was not altered, indicating a reduction in the release of NO by inducible NOS. These data were confirmed by peribronchiolar expression analysis of iNOS. The antioxidant capacity was reduced in the lungs of animals with chronic allergic lung inflammation, which was reversed by the coconut oil, and confirmed by analysis of peribronchiolar 8-iso-PGF2α content. Therefore, the virgin coconut oil supplementation reverses peribronchial inflammatory infiltrate, epithelial hyperplasia, smooth muscle thickening, and hypercontractility through oxidative stress and its interactions with the NO pathway
    corecore