12,257 research outputs found

    The synchrotron foreground and CMB temperature-polarization cross correlation power spectrum from the first year WMAP data

    Get PDF
    We analyse the temperature-polarization cross-correlation in the Galactic synchrotron template that we have recently developed, and between the template and CMB temperature maps derived from WMAP data. Since the polarized synchrotron template itself uses WMAP data, we can estimate residual synchrotron contamination in the CMB CTEC_\ell^{TE} angular spectrum. While C2TEC_2^{TE} appears to be contamined by synchrotron, no evidence for contamination is found in the multipole range which is most relevant for the fit of the cosmological optical depth.Comment: Accepted for pubblication on MNRAS Lette

    Two-dimensional black holes in accelerated frames: quantum aspects

    Full text link
    By considering charged black hole solutions of a one parameter family of two dimensional dilaton gravity theories, one finds the existence of quantum mechanically stable gravitational kinks with a simple mass to charge relation. Unlike their Einsteinian counterpart (i.e. extreme Reissner-Nordstr\"om), these have nonvanishing horizon surface gravity.Comment: 18 pages, harvmac, 2 figure

    Zero Energy of Plane-Waves for ELKOs

    Full text link
    We consider the ELKO field in interaction through contorsion with its own spin density, and we investigate the form of the consequent autointeractions; to do so we take into account the high-density limit and find plane wave solutions: such plane waves give rise to contorsional autointeractions for which the Ricci metric curvature vanishes and therefore the energy density is equal to zero identically. Consequences are discussed.Comment: 7 page

    Running coupling in electroweak interactions of leptons from f(R)-gravity with torsion

    Full text link
    The f(R)-gravitational theory with torsion is considered for one family of leptons; it is found that the torsion tensor gives rise to interactions having the structure of the weak forces while the intrinsic non-linearity of the f(R) function provides an energy-dependent coupling: in this way, torsional f(R) gravity naturally generates both structure and strength of the electroweak interactions among leptons. This implies that the weak interactions among the lepton fields could be addressed as a geometric effect due to the interactions among spinors induced by the presence of torsion in the most general f(R) gravity. Phenomenological considerations are addressed.Comment: 9 pages. arXiv admin note: text overlap with arXiv:1012.5529 by other author

    A modified theory of gravity with torsion and its applications to cosmology and particle physics

    Full text link
    In this paper we consider the most general least-order derivative theory of gravity in which not only curvature but also torsion is explicitly present in the Lagrangian, and where all independent fields have their own coupling constant: we will apply this theory to the case of ELKO fields, which is the acronym of the German \textit{Eigenspinoren des LadungsKonjugationsOperators} designating eigenspinors of the charge conjugation operator, and thus they are a Majorana-like special type of spinors; and to the Dirac fields, the most general type of spinors. We shall see that because torsion has a coupling constant that is still undetermined, the ELKO and Dirac field equations are endowed with self-interactions whose coupling constant is undetermined: we discuss different applications according to the value of the coupling constants and the different properties that consequently follow. We highlight that in this approach, the ELKO and Dirac field's self-interactions depend on the coupling constant as a parameter that may even make these non-linearities manifest at subatomic scales.Comment: 21 page

    Active stabilisation of single drive dual-parallel Mach-Zehnder modulator for single sideband signal generation

    Get PDF
    Presented is a study on a single-drive dual-parallel Mach-Zehnder modulator implementation as a single sideband suppressed carrier generator. High values of both extinction ratio and sidemode suppression ratio were obtained at different modulation frequencies over the Cband. In addition, a stabilisation loop had been developed to preserve the single sideband generation over time

    Direct evidence for efficient ultrafast charge separation in epitaxial WS2_2/graphene heterostructure

    Full text link
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2_2 and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2_2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2_2 layer. The resulting charge transfer state is found to have a lifetime of 1\sim1\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2_2 and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS2_2/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene.Comment: 28 pages, 14 figure

    Direct evidence for efficient ultrafast charge separation in epitaxial WS<sub>2</sub>/graphene heterostructures

    No full text
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene

    Particles and energy fluxes from a CFT perspective

    Get PDF
    We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogolubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy.Comment: Revised version. To appear in Phys.Rev.
    corecore