623 research outputs found

    Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques

    Get PDF
    During the underground coal gasification (UCG) process, fracturing and cracks occur inside the gasification zone and surrounding rocks as the underground coal cavity evolves. Although fracturing activity and crack extension directly affect gasification efficiency and have environmental impacts, little research to date has focused on their effects. This study discusses the application of acoustic emission (AE) analysis for the evaluation of distinctly designed UCG models and operational parameters and describes the gasification process based on its results. We studied the cavity growth, fracturing mechanism, and the effects of various design and operational variables, such as linking-hole type, gas feed rate, and gasification agent. We found that the AE activity was closely related to the temperature change occurring inside the coal, with AE generation apparently resulting from crack initiation and extension around the coal gasification area, which occurs as a result of thermal stress. UCG modeling showed that the location of AE sources reflects the size of the gasification area and the cavity growth. In addition, the quantitative information on the located AE sources can be obtained. The introduction of a process control system into UCG modeling along with AE monitoring allowed for the real-time monitoring of the fracturing and cavity evolution inside a combustion reactor. Together, these processes have the potential to significantly reduce field risk in UCG by enabling the timely adjustment of operational parameters. Thus, AE monitoring is useful for maintaining a safe and efficient UCG process

    Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Get PDF
    The Underground Coal Gasification (UCG) system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE) is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining

    Effect of Injection Flow Rate on Product Gas Quality in Underground Coal Gasification (UCG) Based on Laboratory Scale Experiment: Development of Co-Axial UCG System

    Get PDF
    Underground coal gasification (UCG) is a technique to recover coal energy without mining by converting coal into a valuable gas. Model UCG experiments on a laboratory scale were carried out under a low flow rate (6~12 L/min) and a high flow rate (15~30 L/min) with a constant oxygen concentration. During the experiments, the coal temperature was higher and the fracturing events were more active under the high flow rate. Additionally, the gasification efficiency, which means the conversion efficiency of the gasified coal to the product gas, was 71.22% in the low flow rate and 82.42% in the high flow rate. These results suggest that the energy recovery rate with the UCG process can be improved by the increase of the reaction temperature and the promotion of the gasification area

    Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system

    Get PDF
    In this study, to better simulate underground coal gasification (UCG), an artificial coal seam was constructed to use as a simulated underground gasifier, which comprised coal blocks excavated from the coal seam. This study reports the process and results of three independently designed experiments using coaxial-hole and linking-hole UCG models: (a) a coaxial model using a coaxial pipeline as a gasification channel, (b) a coaxial model using the coaxial pipeline combined with a bottom cross-hole, and (c) a linking-hole model using a horizontal V-shaped cross-hole. In the present work, the fracturing activities and cavity growth inside the reactor were monitored with acoustic emission (AE) technologies. During the process, the temperature profiles, gas production rate, and gas content were measured successively. The results show that AE activities monitored during UCG process are significantly affected by operational variables such as feed gas rate, feed gas content, and linking-hole types. Moreover, the amount of coal consumed during UCG process were estimated using both of the stoichiometric approach and balance computation of carbon (C) based on the product gas contents. A maximum error of less than 10% was observed in these methods, in which the gas leakage was also considered. This demonstrates that the estimated results using the proposed stoichiometric approach could be useful for evaluating energy recovery during UCG

    A pilot Internet "Value of Health" Panel: recruitment, participation and compliance

    Get PDF
    Objectives To pilot using a panel of members of the public to provide preference data via the Internet Methods A stratified random sample of members of the general public was recruited and familiarised with the standard gamble procedure using an Internet based tool. Health states were perdiodically presented in "sets" corresponding to different conditions, during the study. The following were described: Recruitment (proportion of people approached who were trained); Participation (a) the proportion of people trained who provided any preferences and (b) the proportion of panel members who contributed to each "set" of values; and Compliance (the proportion, per participant, of preference tasks which were completed). The influence of covariates on these outcomes was investigated using univariate and multivariate analyses. Results A panel of 112 people was recruited. 23% of those approached (n = 5,320) responded to the invitation, and 24% of respondents (n = 1,215) were willing to participate (net = 5.5%). However, eventual recruitment rates, following training, were low (2.1% of those approached). Recruitment from areas of high socioeconomic deprivation and among ethnic minority communities was low. Eighteen sets of health state descriptions were considered over 14 months. 74% of panel members carried out at least one valuation task. People from areas of higher socioeconomic deprivation and unmarried people were less likely to participate. An average of 41% of panel members expressed preferences on each set of descriptions. Compliance ranged from 3% to 100%. Conclusion It is feasible to establish a panel of members of the general public to express preferences on a wide range of health state descriptions using the Internet, although differential recruitment and attrition are important challenges. Particular attention to recruitment and retention in areas of high socioeconomic deprivation and among ethnic minority communities is necessary. Nevertheless, the panel approach to preference measurement using the Internet offers the potential to provide specific utility data in a responsive manner for use in economic evaluations and to address some of the outstanding methodological uncertainties in this field

    Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum

    Get PDF
    Background: Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. Methodology/Principal Findings: We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation. Conclusions: We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocol

    Repeated freeze–thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons

    Get PDF
    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze–thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze–thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze–thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze–thaw cycles. In patella tendons, the ultimate stress, Young’s modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze–thaw cycles. In conclusion, we identified that cells surviving after freeze–thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze–thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity

    A comparison of two methods for expert elicitation in health technology assessments.

    Get PDF
    BACKGROUND: When data needed to inform parameters in decision models are lacking, formal elicitation of expert judgement can be used to characterise parameter uncertainty. Although numerous methods for eliciting expert opinion as probability distributions exist, there is little research to suggest whether one method is more useful than any other method. This study had three objectives: (i) to obtain subjective probability distributions characterising parameter uncertainty in the context of a health technology assessment; (ii) to compare two elicitation methods by eliciting the same parameters in different ways; (iii) to collect subjective preferences of the experts for the different elicitation methods used. METHODS: Twenty-seven clinical experts were invited to participate in an elicitation exercise to inform a published model-based cost-effectiveness analysis of alternative treatments for prostate cancer. Participants were individually asked to express their judgements as probability distributions using two different methods - the histogram and hybrid elicitation methods - presented in a random order. Individual distributions were mathematically aggregated across experts with and without weighting. The resulting combined distributions were used in the probabilistic analysis of the decision model and mean incremental cost-effectiveness ratios and the expected values of perfect information (EVPI) were calculated for each method, and compared with the original cost-effectiveness analysis. Scores on the ease of use of the two methods and the extent to which the probability distributions obtained from each method accurately reflected the expert's opinion were also recorded. RESULTS: Six experts completed the task. Mean ICERs from the probabilistic analysis ranged between £162,600-£175,500 per quality-adjusted life year (QALY) depending on the elicitation and weighting methods used. Compared to having no information, use of expert opinion decreased decision uncertainty: the EVPI value at the £30,000 per QALY threshold decreased by 74-86 % from the original cost-effectiveness analysis. Experts indicated that the histogram method was easier to use, but attributed a perception of more accuracy to the hybrid method. CONCLUSIONS: Inclusion of expert elicitation can decrease decision uncertainty. Here, choice of method did not affect the overall cost-effectiveness conclusions, but researchers intending to use expert elicitation need to be aware of the impact different methods could have.This paper presents independent research funded by the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula

    Transabdominal Preperitoneal Repair for Obturator Hernia

    Get PDF
    信州大学博士(医学)・学位論文・平成23年3月31日授与(甲第889号)・横山隆秀Background A laparoscopic surgical approach for obturator hernia (OH) repair is uncommon. The aim of the present study was to assess the effectiveness of laparoscopic transabdominal preperitoneal (TAPP) repair for OH. Methods From 2001 to May 2010, 659 patients with inguinal hernia underwent TAPP repair at in our institutes. Among these, the eight patients with OH were the subjects of this study. Results Three of the eight patients were diagnosed as having occult OH, and the other five were diagnosed preoperatively, by ultrasonography and/or computed tomography, as having strangulated OH. Bilateral OH was found in five patients (63%), and combined groin hernias, either unilaterally or bilaterally, were observed in seven patients (88%), all of whom had femoral hernia. Of the five patients with bowel obstruction at presentation, four were determined not to require resection after assessment of the intestinal viability by laparoscopy. There was one case of conversion to a two-stage hernia repair performed to avoid mesh contamination: addition of mini-laparotomy, followed by extraction of the gangrenous intestine for resection and anastomosis with simple peritoneal closure of the hernia defect in the first stage, and a Kugel hernia repair in the second stage. There was no incidence of postoperative morbidity, mortality, or recurrence. Conclusions Because TAPP allows assessment of not only the entire groin area bilaterally but also simultaneous assessment of the viability of the incarcerated intestine with a minimum abdominal wall defect, we believe that it is an adequate approach to the treatment of both occult and acutely incarcerated OH. Two-stage hernia repair is technically feasible in patients requiring resection of the incarcerated intestine.ArticleWORLD JOURNAL OF SURGERY. 35(10):2323-2327 (2011)journal articl

    Plasma Levels of Middle Molecules to Estimate Residual Kidney Function in Haemodialysis without Urine Collection

    Get PDF
    © 2015 Vilar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/Licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Residual Kidney Function (RKF) is associated with survival benefits in haemodialysis (HD) but is difficult to measure without urine collection. Middle molecules such as Cystatin C and β2-microglobulin accumulate in renal disease and plasma levels have been used to estimate kidney function early in this condition. We investigated their use to estimate RKF in patients on HD. DESIGN: Cystatin C, β2-microglobulin, urea and creatinine levels were studied in patients on incremental high-flux HD or hemodiafiltration(HDF). Over sequential HD sessions, blood was sampled pre- and post-session 1 and pre-session 2, for estimation of these parameters. Urine was collected during the whole interdialytic interval, for estimation of residual GFR (GFRResidual = mean of urea and creatinine clearance). The relationships of plasma Cystatin C and β2-microglobulin levels to GFRResidual and urea clearance were determined. RESULTS: Of the 341 patients studied, 64% had urine output>100 ml/day, 32.6% were on high-flux HD and 67.4% on HDF. Parameters most closely correlated with GFRResidual were 1/β2-micoglobulin (r2 0.67) and 1/Cystatin C (r2 0.50). Both these relationships were weaker at low GFRResidual. The best regression model for GFRResidual, explaining 67% of the variation, was: GFRResidual = 160.3 · (1/β2m) - 4.2. Where β2m is the pre-dialysis β2 microglobulin concentration (mg/L). This model was validated in a separate cohort of 50 patients using Bland-Altman analysis. Areas under the curve in Receiver Operating Characteristic analysis aimed at identifying subjects with urea clearance≥2 ml/min/1.73 m2 was 0.91 for β2-microglobulin and 0.86 for Cystatin C. A plasma β2-microglobulin cut-off of ≤19.2 mg/L allowed identification of patients with urea clearance ≥2 ml/min/1.73 m2 with 90% specificity and 65% sensitivity. CONCLUSION: Plasma pre-dialysis β2-microglobulin levels can provide estimates of RKF which may have clinical utility and appear superior to cystatin C. Use of cut-off levels to identify patients with RKF may provide a simple way to individualise dialysis dose based on RKF.Peer reviewe
    corecore