1,521 research outputs found

    Probabilistic Guarded P Systems, A New Formal Modelling Framework

    Get PDF
    Multienvironment P systems constitute a general, formal framework for modelling the dynamics of population biology, which consists of two main approaches: stochastic and probabilistic. The framework has been successfully used to model biologic systems at both micro (e.g. bacteria colony) and macro (e.g. real ecosystems) levels, respectively. In this paper, we extend the general framework in order to include a new case study related to P. Oleracea species. The extension is made by a new variant within the probabilistic approach, called Probabilistic Guarded P systems (in short, PGP systems). We provide a formal definition, a simulation algorithm to capture the dynamics, and a survey of the associated software.Ministerio de Economía y Competitividad TIN2012- 37434Junta de Andalucía P08-TIC-0420

    The Effects of Carbon Dioxide Removal on the Carbon Cycle

    Get PDF
    Increasing atmospheric CO2 is having detrimental effects on the Earth system. Societies have recognized that anthropogenic CO2 release must be rapidly reduced to avoid potentially catastrophic impacts. Achieving this via emissions reductions alone will be very difficult. Carbon dioxide removal (CDR) has been suggested to complement and compensate for insufficient emissions reductions, through increasing natural carbon sinks, engineering new carbon sinks, or combining natural uptake with engineered storage. Here, we review the carbon cycle responses to different CDR approaches and highlight the often-overlooked interaction and feedbacks between carbon reservoirs that ultimately determines CDR efficacy. We also identify future research that will be needed if CDR is to play a role in climate change mitigation, these include coordinated studies to better understand (i) the underlying mechanisms of each method, (ii) how they could be explicitly simulated, (iii) how reversible changes in the climate and carbon cycle are, and (iv) how to evaluate and monitor CDR

    Piavca: a framework for heterogeneous interactions with virtual characters

    Get PDF
    This paper presents a virtual character animation system for real time multimodal interaction in an immersive virtual reality setting. Human to human interaction is highly multimodal, involving features such as verbal language, tone of voice, facial expression, gestures and gaze. This multimodality means that, in order to simulate social interaction, our characters must be able to handle many different types of interaction, and many different types of animation, simultaneously. Our system is based on a model of animation that represents different types of animations as instantiations of an abstract function representation. This makes it easy to combine different types of animation. It also encourages the creation of behavior out of basic building blocks. making it easy to create and configure new beahviors for novel situations. The model has been implemented in Piavca, an open source character animation system

    Electroluminescent Characteristics of DBPPV–ZnO Nanocomposite Polymer Light Emitting Devices

    Get PDF
    We have demonstrated that fabrication and characterization of nanocomposite polymer light emitting devices with metal Zinc Oxide (ZnO) nanoparticles and 2,3-dibutoxy-1,4-poly(phenylenevinylene) (DBPPV). The current and luminance characteristics of devices with ZnO nanoparticles are much better than those of device with pure DBPPV. Optimized maximum luminance efficiencies of DBPPV–ZnO (3:1 wt%) before annealing (1.78 cd/A) and after annealing (2.45 cd/A) having a brightness 643 and 776 cd/m2at a current density of 36.16 and 31.67 mA/cm2are observed, respectively. Current density–voltage and brightness–voltage characteristics indicate that addition of ZnO nanoparticles can facilitate electrical injection and charge transport. The thermal annealing is thought to result in the formation of an interfacial layer between emissive polymer film and cathode

    Immune Protection Induced on Day 10 Following Administration of the 2009 A/H1N1 Pandemic Influenza Vaccine

    Get PDF
    BACKGROUND: The 2009 swine-origin influenza virus (S-OIV) H1N1 pandemic has caused more than 18,000 deaths worldwide. Vaccines against the 2009 A/H1N1 influenza virus are useful for preventing infection and controlling the pandemic. The kinetics of the immune response following vaccination with the 2009 A/H1N1 influenza vaccine need further investigation. METHODOLOGY/PRINCIPAL FINDINGS: 58 volunteers were vaccinated with a 2009 A/H1N1 pandemic influenza monovalent split-virus vaccine (15 µg, single-dose). The sera were collected before Day 0 (pre-vaccination) and on Days 3, 5, 10, 14, 21, 30, 45 and 60 post vaccination. Specific antibody responses induced by the vaccination were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). After administration of the 2009 A/H1N1 influenza vaccine, specific and protective antibody response with a major subtype of IgG was sufficiently developed as early as Day 10 (seroprotection rate: 93%). This specific antibody response could maintain for at least 60 days without significant reduction. Antibody response induced by the 2009 A/H1N1 influenza vaccine could not render protection against seasonal H1N1 influenza (seroconversion rate: 3% on Day 21). However, volunteers with higher pre-existing seasonal influenza antibody levels (pre-vaccination HI titer ≥1∶40, Group 1) more easily developed a strong antibody protection effect against the 2009 A/H1N1 influenza vaccine as compared with those showing lower pre-existing seasonal influenza antibody levels (pre-vaccination HI titer <1∶40, Group 2). The titer of the specific antibody against the 2009 A/H1N1 influenza was much higher in Group 1 (geometric mean titer: 146 on Day 21) than that in Group 2 (geometric mean titer: 70 on Day 21). CONCLUSIONS/SIGNIFICANCE: Recipients could gain sufficient protection as early as 10 days after vaccine administration. The protection could last at least 60 days. Individuals with a stronger pre-existing seasonal influenza antibody response may have a relatively higher potential for developing a stronger humoral immune response after vaccination with the 2009 A/H1N1 pandemic influenza vaccine

    Methanobactin and the Link Between Copper and Bacterial Methane Oxidation

    Get PDF
    Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu2+ to Cu1+. In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs

    CEACAM1 Negatively Regulates IL-1β Production in LPS Activated Neutrophils by Recruiting SHP-1 to a SYK-TLR4-CEACAM1 Complex

    Get PDF
    LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation
    corecore