18 research outputs found

    Abnormal X : autosome ratio, but normal X chromosome inactivation in human triploid cultures

    Get PDF
    BACKGROUND: X chromosome inactivation (XCI) is that aspect of mammalian dosage compensation that brings about equivalence of X-linked gene expression between females and males by inactivating one of the two X chromosomes (Xi) in normal female cells, leaving them with a single active X (Xa) as in male cells. In cells with more than two X's, but a diploid autosomal complement, all X's but one, Xa, are inactivated. This phenomenon is commonly thought to suggest 1) that normal development requires a ratio of one Xa per diploid autosomal set, and 2) that an early event in XCI is the marking of one X to be active, with remaining X's becoming inactivated by default. RESULTS: Triploids provide a test of these ideas because the ratio of one Xa per diploid autosomal set cannot be achieved, yet this abnormal ratio should not necessarily affect the one-Xa choice mechanism for XCI. Previous studies of XCI patterns in murine triploids support the single-Xa model, but human triploids mostly have two-Xa cells, whether they are XXX or XXY. The XCI patterns we observe in fibroblast cultures from different XXX human triploids suggest that the two-Xa pattern of XCI is selected for, and may have resulted from rare segregation errors or Xi reactivation. CONCLUSION: The initial X inactivation pattern in human triploids, therefore, is likely to resemble the pattern that predominates in murine triploids, i.e., a single Xa, with the remaining X's inactive. Furthermore, our studies of XIST RNA accumulation and promoter methylation suggest that the basic features of XCI are normal in triploids despite the abnormal X:autosome ratio

    Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation

    No full text
    The extensive heterogeneity underlying the genetic component of mental retardation (MR) is the main cause for our limited understanding of the aetiology of this highly prevalent condition. Hence we set out to identify genes involved in MR. We investigated the breakpoints of two balanced X;autosome translocations in two unrelated female patients with mild/moderate MR and found that the Xp11.2 breakpoints disrupt the novel human KIAA1202 (hKIAA1202) gene in both cases. We also identified a missense exchange in this gene, segregating with the Stocco dos Santos XLMR syndrome in a large four-generation pedigree but absent in >1,000 control X-chromosomes. Among other phenotypic characteristics, the affected males in this family present with severe MR, delayed or no speech, seizures and hyperactivity. Molecular studies of hKIAA1202 determined its genomic organisation, its expression throughout the brain and the regulation of expression of its mouse homologue during development. Transient expression of the wild-type KIAA1202 protein in HeLa cells showed partial colocalisation with the F-actin based cytoskeleton. On the basis of its domain structure, we argue that hKIAA1202 is a new member of the APX/Shroom protein family. Members of this family contain a PDZ and two ASD domains of unknown function and have been shown to localise at the cytoskeleton, and play a role in neurulation, cellular architecture, actin remodelling and ion channel function. Our results suggest that hKIAA1202 may be important in cognitive function and/or development.Olivier Hagens, Aline Dubos, Fatima Abidi, Gotthold Barbi, Laura Van Zutven, Maria Hoeltzenbein, Niels Tommerup, Claude Moraine, Jean-Pierre Fryns and Jamel Chelly, et al

    De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome

    Get PDF
    Item does not contain fulltextBrain malformations are individually rare but collectively common causes of developmental disabilities. Many forms of malformation occur sporadically and are associated with reduced reproductive fitness, pointing to a causative role for de novo mutations. Here, we report a study of Baraitser-Winter syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular colobomata and neuronal migration defect. Using whole-exome sequencing of three proband-parent trios, we identified de novo missense changes in the cytoplasmic actin-encoding genes ACTB and ACTG1 in one and two probands, respectively. Sequencing of both genes in 15 additional affected individuals identified disease-causing mutations in all probands, including two recurrent de novo alterations (ACTB, encoding p.Arg196His, and ACTG1, encoding p.Ser155Phe). Our results confirm that trio-based exome sequencing is a powerful approach to discover genes causing sporadic developmental disorders, emphasize the overlapping roles of cytoplasmic actin proteins in development and suggest that Baraitser-Winter syndrome is the predominant phenotype associated with mutation of these two genes

    Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations

    No full text
    Axenfeld–Rieger syndrome (ARS) is a rare autosomal dominant disorder, which encompasses a range of congential malformations affecting the anterior segment of the eye. ARS shows genetic heterogeneity and mutations of the two genes, PITX2 and FOXC1, are known to be associated with the pathogenesis. There are several excellent reviews dealing with the complexity of the phenotype and genotype of ARS. In this study, we will attempt to give a brief review of the clinical features and the relevant diagnostic approaches, together with a detailed review of published PITX2 and FOXC1 mutations
    corecore