43 research outputs found

    Coeliac Disease and Mast Cells

    Get PDF
    Over the last decades, there has been an impressive progress in our understanding of coeliac disease pathogenesis and it has become clear that the disorder is the final result of complex interactions of environmental, genetic, and immunological factors. Coeliac disease is now considered a prototype of T-cell-mediated disease characterized by loss of tolerance to dietary gluten and the targeted killing of enterocytes by T-cell receptor \u3b1\u3b2 intraepithelial lymphocytes. Accumulating evidence, however, indicates that the induction of a gluten-specific T helper-1 response must be preceded by the activation of the innate immune system. Mast cells are key players of the innate immune response and contribute to the pathogenesis of a multitude of diseases. Here, we review the results of studies aimed at investigating the role of mast cells in the pathogenesis of coeliac disease, showing that these cells increase in number during the progression of the disease and contribute to define a pro-inflammatory microenvironment

    Mechanism and clinical evidence of immunotherapy in allergic rhinitis

    Get PDF
    Allergic rhinitis is a common upper airway disease caused by hypersensitivity to various aeroallergens. It causes increased inflammation throughout the body and may be complicated by other otolaryngological pathologies such as chronic hyperplastic eosinophilic sinusitis, nasal polyposis, and serous otitis media. Allergic rhinitis is an IgE-mediated disease and immunotherapy can be a possible approach for patients to limit the use of antihistamines and corticosteroids. There is evidence that allergen immunotherapy can prevent the development of new sensitizations and reduce the risk of later development of asthma in patients with allergic rhinitis. However, some patients do not benefit from this approach and the efficacy of immunotherapy in reducing the severity and relapse of symptoms is still a matter of debate. This review highlights new aspects of allergic rhinitis with a particular focus on the impact of sexual dimorphism on the disease manifestation and efficacy to the allergen specific immunotherapy

    Mast Cell: An Emerging Partner in Immune Interaction

    Get PDF
    Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell–cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell–cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners

    Endonuclease and redox activities of human apurinic/apyrimidinic endonuclease 1 have distinctive and essential functions in IgA class switch recombination

    Get PDF
    The base excision repair (BER) pathway is an important DNA repair pathway and is essential for immune responses. In fact, it regulates both the antigen-stimulated somatic hypermutation (SHM) process and plays a central function in the process of class switch recombination (CSR). For both processes, a central role for apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated. APE1 acts also as a master regulator of gene expression through its redox activity. APE1's redox activity stimulates the DNA-binding activity of several transcription factors, including NF-\u3baB and a few others involved in inflammation and in immune responses. Therefore, it is possible that APE1 has a role in regulating the CSR through its function as a redox coactivator. The present study was undertaken to address this question. Using the CSR-competent mouse B-cell line CH12F3 and a combination of specific inhibitors of APE1's redox (APX3330) and repair (compound 3) activities, APE1-deficient or -reconstituted cell lines expressing redox-deficient or endonuclease-deficient proteins, and APX3330-treated mice, we determined the contributions of both endonuclease and redox functions of APE1 in CSR. We found that APE1's endonuclease activity is essential for IgA-class switch recombination. We provide evidence that the redox function of APE1 appears to play a role in regulating CSR through the interleukin-6 signaling pathway and in proper IgA expression. Our results shed light on APE1's redox function in the control of cancer growth through modulation of the IgA CSR process

    Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells.

    Get PDF
    The evidence of a tight spatial interaction between mast cells (MCs) and B lymphocytes in secondary lymphoid organs, along with the data regarding the abundance of MCs in several B-cell lymphoproliferative disorders prompted us to investigate whether MCs could affect the proliferation and differentiation of B cells. To this aim, we performed coculture assays using mouse splenic B cells and bone marrow-derived MCs. Both nonsensitized and activated MCs proved able to induce a significant inhibition of cell death and an increase in proliferation of naive B cells. Such proliferation was further enhanced in activated B cells. This effect relied on cell-cell contact and MC-derived interleukin-6 (IL-6). Activated MCs could regulate CD40 surface expression on unstimulated B cells and the interaction between CD40 with CD40 ligand (CD40L) on MCs, together with MC-derived cytokines, was involved in the differentiation of B cells into CD138(+) plasma cells and in selective immunoglobulin A (IgA) secretion. These data were corroborated by in vivo evidence of infiltrating MCs in close contact with IgA-expressing plasma cells within inflamed tissues. In conclusion, we reported here a novel role for MCs in sustaining B-cell expansion and driving the development of IgA-oriented humoral immune responses

    Mast Cells Respond to Candida albicans Infections and Modulate Macrophages Phagocytosis of the Fungus

    Get PDF
    Mast cells (MCs) are long-lived immune cells widely distributed at mucosal surfaces and are among the first immune cell type that can get in contact with the external environment. This study aims to unravel the mechanisms of reciprocal influence between mucosal MCs and Candida albicans as commensal/opportunistic pathogen species in humans. Stimulation of bone marrow-derived mast cells (BMMCs) with live forms of C. albicans induced the release of TNF-α, IL-6, IL-13, and IL-4. Quite interestingly, BMMCs were able to engulf C. albicans hyphae, rearranging their α-tubulin cytoskeleton and accumulating LAMP1+ vesicles at the phagocytic synapse with the fungus. Candida-infected MCs increased macrophage crawling ability and promoted their chemotaxis against the infection. On the other side, resting MCs inhibited macrophage phagocytosis of C. albicans in a contact-dependent manner. Taken together, these results indicate that MCs play a key role in the maintenance of the equilibrium between the host and the commensal fungus C. albicans, limiting pathological fungal growth and modulating the response of resident macrophages during infections

    Coeliac Disease and Mast Cells

    No full text
    Over the last decades, there has been an impressive progress in our understanding of coeliac disease pathogenesis and it has become clear that the disorder is the final result of complex interactions of environmental, genetic, and immunological factors. Coeliac disease is now considered a prototype of T-cell-mediated disease characterized by loss of tolerance to dietary gluten and the targeted killing of enterocytes by T-cell receptor αβ intraepithelial lymphocytes. Accumulating evidence, however, indicates that the induction of a gluten-specific T helper-1 response must be preceded by the activation of the innate immune system. Mast cells are key players of the innate immune response and contribute to the pathogenesis of a multitude of diseases. Here, we review the results of studies aimed at investigating the role of mast cells in the pathogenesis of coeliac disease, showing that these cells increase in number during the progression of the disease and contribute to define a pro-inflammatory microenvironment

    Coeliac Disease and Mast Cells

    No full text

    Mast cell/MDSC a liaison immunosuppressive for tumor microenvironment

    No full text
    The instauration of an immunosuppressive microenvironment is a key event in cancer development and progression. Here, we discuss increasing evidences of the crosstalk between myeloid-derived suppressor cells (MDSCs) and mast cells (MCs) as a new fuel for the cancer immunosuppressive machinery
    corecore