12,337 research outputs found

    Statistical stability and limit laws for Rovella maps

    Full text link
    We consider the family of one-dimensional maps arising from the contracting Lorenz attractors studied by Rovella. Benedicks-Carleson techniques were used by Rovella to prove that there is a one-parameter family of maps whose derivatives along their critical orbits increase exponentially fast and the critical orbits have slow recurrent to the critical point. Metzger proved that these maps have a unique absolutely continuous ergodic invariant probability measure (SRB measure). Here we use the technique developed by Freitas and show that the tail set (the set of points which at a given time have not achieved either the exponential growth of derivative or the slow recurrence) decays exponentially fast as time passes. As a consequence, we obtain the continuous variation of the densities of the SRB measures and associated metric entropies with the parameter. Our main result also implies some statistical properties for these maps.Comment: 1 figur

    Extreme Value Theory for Piecewise Contracting Maps with Randomly Applied Stochastic Perturbations

    Get PDF
    We consider globally invertible and piecewise contracting maps in higher dimensions and we perturb them with a particular kind of noise introduced by Lasota and Mackey. We got random transformations which are given by a stationary process: in this framework we develop an extreme value theory for a few classes of observables and we show how to get the (usual) limiting distributions together with an extremal index depending on the strength of the noise.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1407.041

    Dynamics of a superconducting qubit coupled to the quantized cavity field: a unitary transformation approach

    Full text link
    We present a novel approach for studying the dynamics of a superconducting qubit in a cavity. We succeed in linearizing the Hamiltonian through the application of an appropriate unitary transformation followed by a rotating wave approximation (RWA). For certain values of the parameters involved, we show that it is possible to obtain a a Jaynes-Cummings type Hamiltonian. As an example, we show the existence of super-revivals for the qubit inversion

    A Random Multifractal Tilling

    Full text link
    We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each nn-step there is a random choice of a parameter ρi\rho_i related to the section ratio. For the case of random choice between ρ1\rho_1 and ρ2\rho_2 we find analytically the full spectrum of fractal dimensions

    Anisotropy and percolation threshold in a multifractal support

    Full text link
    Recently a multifractal object, QmfQ_{mf}, was proposed to study percolation properties in a multifractal support. The area and the number of neighbors of the blocks of QmfQ_{mf} show a non-trivial behavior. The value of the probability of occupation at the percolation threshold, pcp_{c}, is a function of ρ\rho, a parameter of QmfQ_{mf} which is related to its anisotropy. We investigate the relation between pcp_{c} and the average number of neighbors of the blocks as well as the anisotropy of QmfQ_{mf}
    corecore