76 research outputs found

    Unified model of baryonic matter and dark components

    Get PDF
    We investigate an interacting two-fluid cosmological model and introduce a scalar field representation by means of a linear combination of the individual energy densities. Applying the integrability condition to the scalar field equation we show that this "exotic quintessence" is driven by an exponential potential and the two-fluid mixture can be considered as a model of three components. These components are associated with baryonic matter, dark matter and dark energy respectively. We use the Simon, Verde & Jimenez (2005) determination of the redshift dependence of the Hubble parameter to constrain the current density parameters of this model. With the best fit density parameters we obtain the transition redshift between non accelerated and accelerated regimes z_{acc}=0.66 and the time elapsed since the initial singularity t_0= 19.8 Gyr. We study the perturbation evolution of this model and find that the energy density perturbation decreases with the cosmological time.Comment: 8 pages, 6 figures A new section adde

    New Results on Holographic Three-Point Functions

    Full text link
    We exploit a gauge invariant approach for the analysis of the equations governing the dynamics of active scalar fluctuations coupled to the fluctuations of the metric along holographic RG flows. In the present approach, a second order ODE for the active scalar emerges rather simply and makes it possible to use the Green's function method to deal with (quadratic) interaction terms. We thus fill a gap for active scalar operators, whose three-point functions have been inaccessible so far, and derive a general, explicitly Bose symmetric formula thereof. As an application we compute the relevant three-point function along the GPPZ flow and extract the irreducible trilinear couplings of the corresponding superglueballs by amputating the external legs on-shell.Comment: v2: reference added, typos corrected v3: sign convention for background changed, agrees with version published in JHE

    Cosmological model with interactions in the dark sector

    Get PDF
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure

    Involving patients and their families in deciding to use next generation sequencing: Results from a nationally representative survey of U.S. oncologists

    Get PDF
    Objective: Next generation sequencing (NGS) may aid in tumor classification and treatment. Barriers to shared decision-making may influence use of NGS. We examined, from oncologists’ perspectives, whether barriers to involving patients/families in decision-making were associated with NGS use. Methods: Using data from the first national survey of medical oncologists’ perspectives on precision medicine (N = 1281), we approached our analyses in two phases. Bivariate analyses initially evaluated associations between barriers to involving patients/families in deciding to use NGS and provider- and organizational-level characteristics. Modified Poisson regressions then examined associations between patient/family barriers and NGS use. Results: Approximately 59 % of oncologists reported at least one barrier to involving patients/families in decision-making regarding NGS use. Those reporting patient/family barriers tended to have fewer genomic resources at their practices, to be in rural or suburban areas, and to have a higher proportion of Medicaid patients. However, these barriers were not associated with NGS use. Conclusions: Oncologists encounter barriers to involving patients/families in NGS testing decisions. Organizational barriers may also potentially play a role in testing decisions. Practice implications: To foster patient-centered care, strategies to support patient involvement in genomic testing decisions are needed, particularly among practices in low-resource settings

    How does Inflation Depend Upon the Nature of Fluids Filling Up the Universe in Brane World Scenario

    Full text link
    By constructing different parameters which are able to give us the information about our universe during inflation,(specially at the start and the end of the inflationary universe) a brief idea of brane world inflation is given in this work. What will be the size of the universe at the end of inflation,i.e.,how many times will it grow than today's size is been speculated and analysed thereafter. Different kinds of fluids are taken to be the matter inside the brane. It is observed that in the case of highly positive pressure grower gas like polytropic,the size of the universe at the end of inflation is comparitively smaller. Whereas for negative pressure creators (like chaplygin gas) this size is much bigger. Except thse two cases, inflation has been studied for barotropic fluid and linear redshift parametrization ω(z)=ω0+ω1z\omega(z) = \omega_{0} + \omega_{1} z too. For them the size of the universe after inflation is much more high. We also have seen that this size does not depend upon the potential energy at the end of the inflation. On the contrary, there is a high impact of the initial potential energy upon the size of inflation.Comment: 20 page

    Phantom Divide Crossing with General Non-minimal Kinetic Coupling

    Full text link
    We propose a model of dark energy consists of a single scalar field with a general non-minimal kinetic couplings to itself and to the curvature. We study the cosmological dynamics of the equation of state in this setup. The coupling terms have the form ξ1Rf(ϕ)μϕμϕ\xi_{1} R f(\phi)\partial_{\mu}\phi\partial^{\mu}\phi and ξ2Rμνf(ϕ)μϕνϕ\xi_{2} R_{\mu\nu}f(\phi)\partial^{\mu}\phi\partial^{\nu}\phi where ξ1\xi_{1} and ξ2\xi_{2} are coupling parameters and their dimensions depend on the type of function f(ϕ)f(\phi). We obtain the conditions required for phantom divide crossing and show numerically that a cosmological model with general non-minimal derivative coupling to the scalar and Ricci curvatures can realize such a crossing.Comment: 12 pages, 4 figures. Accepted for publication in Gen. Rel. Grav. arXiv admin note: substantial text overlap with arXiv:1105.4967, arXiv:1201.1627, and with arXiv:astro-ph/0610092 by other author

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) 1ω0.55-1 \leq \omega \leq -0.55 and Ωm=0.320.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval 1ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=1.290.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.310.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    Interacting Ghost Dark Energy in Non-Flat Universe

    Full text link
    A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρD=αH\rho_D=\alpha H, where α\alpha is a constant of order ΛQCD3\Lambda_{\rm QCD}^3 and ΛQCD100MeV\Lambda_{\rm QCD}\sim 100 MeV is QCD mass scale. In this paper, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always wD>1w_D > -1 and mimics a cosmological constant in the late time, while it is possible to have wD<1w_D < -1 provided the interaction is taken into account. When k=0k = 0, all previous results of ghost dark energy in flat universe are recovered. To check the observational consistency, we use Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at 1σ1\sigma confidence interval are: Ωm0=0.350.03+0.02\Omega_m^0= 0.35^{+0.02}_{-0.03}, ΩD0=0.750.04+0.01\Omega_D^0=0.75_{-0.04}^{+0.01} and b2=0.080.03+0.03b^2=0.08^{+0.03}_{-0.03}. Consequently the total energy density of universe at present time in this model at 68% level equates to Ωtot0=1.100.05+0.02\Omega_{\rm tot}^0=1.10^{+0.02}_{-0.05}.Comment: 19 pages, 9 figures. V2: Added comments, observational consequences, references, figures and major corrections. Accepted for publication in General Relativity and Gravitatio

    Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities

    Full text link
    We investigate de Sitter solutions in non-local gravity as well as in non-local gravity with Lagrange constraint multiplier. We examine a condition to avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter solutions. Furthermore, we explicitly demonstrate that three types of the finite-time future singularities can occur in non-local gravity and explore their properties. In addition, we evaluate the effective equation of state for the universe and show that the late-time accelerating universe may be effectively the quintessence, cosmological constant or phantom-like phases. In particular, it is found that there is a case in which a crossing of the phantom divide from the non-phantom (quintessence) phase to the phantom one can be realized when a finite-time future singularity occurs. Moreover, it is demonstrated that the addition of an R2R^2 term can cure the finite-time future singularities in non-local gravity. It is also suggested that in the framework of non-local gravity, adding an R2R^2 term leads to possible unification of the early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General Relativity and Gravitatio

    Alteration in the plasma concentration of a DAAO inhibitor, 3-methylpyrazole-5-carboxylic acid, in the ketamine-treated rats and the influence on the pharmacokinetics of plasma d-tryptophan

    Get PDF
    A determination method for 3-methylpyrazole-5-carboxylic acid (MPC), an inhibitor of d-amino acid oxidase (DAAO), in rat plasma was developed by using high-performance liquid chromatography-mass spectrometry (LC-MS). The structural isomer of MPC, 3-methylpyrazole-4-carboxylic acid, was used as an internal standard, and the intra- and inter-day accuracies and precisions were satisfactory for the determination of plasma MPC
    corecore