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We investigate an interacting two-fluid cosmological model and introduce a scalar field representation
by means of a linear combination of the individual energy densities. Applying the integrability condition
to the scalar field equation we show that this “exotic quintessence” is driven by an exponential potential
and the two-fluid mixture can be considered as a model of three components. These components are
associated with baryonic matter, dark matter and dark energy respectively. We use the Simon, Verde and
Jimenez [J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71 (2005) 123001] determination of the redshift
dependence of the Hubble parameter to constrain the current density parameters of this model. With the
best fit density parameters we obtain the transition redshift between non-accelerated and accelerated
regimes zacc = 0.66 and the time elapsed since the initial singularity t0 = 19.8 Gyr. We study the
perturbation evolution of this model and find that the energy density perturbation decreases with the
cosmological time.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Astrophysical data suggests that the Universe is accelerating
[1,2]. This acceleration may be explained by very different mod-
els, among them, the simplest one is the �CDM [3,4]. It assumes a
cosmological constant arising from the energy density of the zero
point fluctuations of the quantum vacuum and cold dark matter in
form of pressureless dust. While it fits rather well all the obser-
vational constraints, the small positive value of the energy density
of the vacuum remains as an explanatory challenge for physics to-
day. See also Refs. [5,6] for objections to this interpretation. The
next step is to propose a dark energy component that may vary
with time and that is generally modeled by a scalar field. Most
of these models assume that dark matter and scalar field compo-
nents evolve independently. Again, this is not the solution because
in the analysis of these models through SNIa or WMAP data, best
fit models for one set data alone is usually ruled out by the other
set at a large confidence limit [7]. As these conclusions are valid
only for Standard Models, where dark energy and dark matter are
decoupled, many papers have been devoted to interacting mod-
els [8]. Certain models conceive the interaction as a time-variable
dark mass, evolving with an inverse power law potential or an ex-
ponential potential [9–12].

In this Letter we clarify this point and establish an exactly solv-
able model with a smooth transition from a matter-dominated
phase to a period of accelerated expansion. We introduce an in-
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teracting two-fluid cosmological model and investigate the effects
of imposing the integrability condition of the whole equation of
conservation. It forces the dynamic of the model to be governed
by a modified Friedmann equation with three components. One of
them, associated with an exponential potential, drives an exotic
scalar field (exotic quintessence). Here, we show that the problem
of an accelerating universe can be realized in a comparatively sim-
ple manner within the framework of general relativity. Finally, the
perturbation evolution of the model is investigated.

Our Letter is organized as follows. In Section 2 we consider
the general interacting two-fluid cosmological model and introduce
the exotic quintessence. There, we obtain the evolution equation
of the exotic field, find their implicit solutions, build the modified
Friedmann equation and show the asymptotic behavior of the scale
factor by using stability analysis. In Section 3 we introduce bary-
onic matter, dark matter and dark energy components and show
that dark components satisfy separately an effective equation of
conservation with variable equation of state. In Section 4 we find
confidence regions for the parameters of the model by using the
Hubble function H(z) data, the age of universe and the redshift of
the transition from non-accelerated to accelerated regime for the
best fit model. In Section 5 we present the equations governing
the perturbations of the model. In Section 6 we express the con-
clusions.

2. Exotic quintessence

Cosmological models are based in the Einstein equations of
the gravitational field where the source includes different kinds
of matter known, for instance protons, neutrons, photons, neutri-
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nos, etc., as well as non-relativistic non-baryonic cold dark matter
and dark energy. We embark in a less ambitious project by con-
sidering a model consisting of two perfect fluids with an energy–
momentum tensor Tik = T (1)

ik + T (2)

ik . Here T (n)

ik = (ρn + pn)uiuk +
pn gik , where ρn and pn are the energy density and the equilib-
rium pressure of fluid n and ui is the four-velocity. Assuming that
the two fluids interact between them in a spatially flat homoge-
neous and isotropic Friedmann–Robertson–Walker (FRW) cosmo-
logical model, the Einstein’s equations reduce to two algebraically
independent equations:

3H2 = ρ1 + ρ2, (1)

ρ̇1 + ρ̇2 + 3H
(
(1 + w1)ρ1 + (1 + w2)ρ2

) = 0, (2)

where a(t) is the FRW scale factor and H(t) = ȧ/a is the Hub-
ble expansion rate. We introduce an equation of state for each
fluid component wn = pn/ρn , n = 1,2, and for simplicity we as-
sume that w1, w2 are constants and ρ1,ρ2 > 0. This simplified
model leads to a reduction of the number of fundamental param-
eters required to describe observations. It can be considered as an
advantage from the computational point of view. We choose units
such as the gravitational constant is set to 8πG = 1 and c = 1.

The whole equation of conservation (2) shows the interaction
between both fluid components allowing the mutual exchange
of energy and momentum, meaning that, there will be no local
energy–momentum conservation for these fluids separately. Then,
we assume an overall perfect fluid description with an effective
equation of state, w = p/ρ = −2Ḣ/3H2 − 1, where p = p1 + p2
and ρ = ρ1 + ρ2. So that, from Eqs. (1), (2) we get

−2Ḣ = (1 + w1)ρ1 + (1 + w2)ρ2 = (1 + w)ρ. (3)

To avoid an eventual super acceleration of the universe, which
could lead to a “big rip” singularity, we choose w1 > −1 and
w2 > −1 [13]. Hence, (1 + w)ρ = −2Ḣ > 0 and there is no big
rip singularity. These models can be investigated by introducing a
scalar field φ representation of the interacting two-fluid mixture

φ̇2 = (1 + w1)ρ1 + (1 + w2)ρ2, (4)

with φ̇2 = −2Ḣ . The dynamic equation for the scalar field is ob-
tained from the equation of conservation (2)

φ̈ + 3

2
(1 + w1)Hφ̇ + w1 − w2

2

ρ̇2

φ̇
= 0. (5)

It can be integrated by setting the interaction between the two
fluids by

ρ̇2 + Aφ̇ρ2 = 0, (6)

where A is a new constant parameter of the model. Integrating
Eq. (6), we find that the energy density of the second fluid can be
associated with an exponential potential

ρ2 = ρ20 H2
0e−A(φ−φ0) = V (φ), (7)

where ρ20 is a positive integration constant and H0, φ0 are the
present values of Hubble constant and scalar field.

From Eqs. (4), (5) and (7) we obtain the total energy density
and pressure of the fluid mixture and the dynamical equation for
the scalar field

ρ = φ̇2

1 + w1
+ w1 − w2

1 + w1
V , (8)

p = w1
φ̇2

1 + w1
− w1 − w2

1 + w1
V , (9)

φ̈ + 3
(1 + w1)Hφ̇ + w1 − w2 dV = 0 (10)
2 2 dφ
with ρ + p = φ̇2. These equations are different than the conven-
tional ones describing quintessence, in contrast, define an exotic
scalar field. When the interacting two-fluids system is related to
the scalar field in the form ρ1 = φ̇2/2 and ρ2 = V (φ), with equa-
tions of state p1 = ρ1 and p2 = −ρ2, meaning that w1 = 1 (stiff
matter) and w2 = −1 (vacuum energy), the exotic scalar field re-
duces to quintessence. Then, due to the interactions between the
two-fluid components the energy–momentum tensor conservation
of the system, as a whole, is equivalent to the Klein–Gordon equa-
tion. For any other interacting two-fluid mixture, the cosmological
model contains an exotic quintessence field φ driven by an expo-
nential potential.

Using the integrability condition (6) in the field equation (5), its
first integral is given by

φ̇ = AH + cH0(1 + z)3(1+w1)/2, (11)

and

φ = φ0 − A ln (1 + z) − cH0

z∫
0

(1 + z)(1+3w1)/2

H
dz, (12)

where c is an arbitrary integration constant, z = −1 + a0/a is the
redshift parameter and a0 is the present scale factor. This model is
finally closed when Eq. (11) is inserted into the energy density (8)
[14]. Hence, the Friedmann equation (1) reads

3H2 = 1

3(1 + w1) − A2

[
6c AH0 H(1 + z)3(1+w1)/2

+ 3(w1 − w2)ρ2 + 3c2 H2
0(1 + z)3(1+w1)

]
. (13)

As a consequence of the linear term in the expansion rate H , this
equation can be seen as a modified Friedmann equation. Its solu-
tion gives the scale factor and the model we propose, containing
exotic quintessence, could be formally solved.

In order to obtain the asymptotic behavior of the scale factor
it will be useful to find the constant solutions of the dynamical
equation for the overall equation of state

ẇ = −3H(w − w1)

(√
A2

3
(1 + w) − (1 + w)

)
, (14)

and investigate their asymptotic stability. This equation has two
stationary solutions w1 and A2/3 − 1 (Eq. (3) excludes the solu-
tion w = −1). Assuming that A2 < 3(1 + w1), we find that w1
is an unstable solution while A2/3 − 1 becomes asymptotically
stable. Essentially, the evolution of the geometry is dictated by
w = −2Ḣ/3H2 − 1, meaning that the universe begins to evolve
from an unstable phase as it were dominated by the first fluid
w1 at early times, a ≈ t2/3(1+w1) , and ends in a stable expanding
phase dominated by the exponential potential, a ≈ t2/A2

. The lat-
ter becomes an expanding accelerated phase when the slope of the
potential satisfy the inequality A2 < 2.

3. Dynamic of baryonic and dark components

The integrability condition (6) can be considered as an effec-
tive equation of conservation for the second fluid. This allows us
to identify ρ2 with the energy density of the dark energy compo-
nent and wde = −1 + Aφ̇/3H with its effective equation of state.
Expressing the latter in term of the exotic field φ we get

wde ≡ −1 + Aφ̇

3H
= −1 + Aφ̇√

3[φ̇2 − w2 V ]
, (15)

and the relation

w = −1 + 3
2
(1 + wde)

2, (16)

A
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linking the overall and dark energy equations of state. Also, for
convenience we write ρ2 = ρ20 H2

0(1 + z)3λ with

3λ ln (1 + z) = −A(φ − φ0). (17)

The H linear term in Eq. (13) is adequate to describe non-
relativistic non-baryonic cold dark matter components whose
energy–momentum tensor is approximately dust-like. Finally, the
baryonic matter is introduced by setting w1 = 0 in the third term
of Eq. (13). Making these identifications the modified Friedmann
equation (13) becomes

H2

H2
0

= Ωdm(1 + z)3/2 H

H0
+ Ωde(1 + z)3λ + Ωb(1 + z)3, (18)

where

Ωdm = 2c A

3 − A2
, (19)

Ωde = −w2ρ20

3 − A2
, (20)

Ωb = c2

3 − A2
, (21)

are the present dark matter, dark energy and baryonic matter den-
sity parameters respectively. As these are constrained according to
Ωdm + Ωde + Ωb = 1, we conclude that

(c + A)2 − w2ρ20 = 3. (22)

During the accelerated epoch of the universe ä > 0, the SEC is vio-
lated and ρ+3p = ρ1 +(1+3w2)ρ2 < 0 leads to −1 < w2 < −1/3.
Hence, one finds that the conditions A2 < 3 and c A > 0 are consis-
tent with the requirement of having positive density parameters.

The exotic quintessence is essentially based on the integrabil-
ity condition (6) under which the conservation equation (2) and
the exotic field equation (5) can be integrated. Actually, from the
above condition c A > 0 along with Eq. (11), we get Aφ̇ > 0 for an
expanding universe. Then, ρ2 is a Liapunov function and the solu-
tion ρ2 = 0, of Eq. (6), is asymptotically stable. Also, from Eqs. (4),
(7) and (11) the energy density of the first fluid has a vanishing
limit in the remote future. Hence, this general model is viable and
it does not contradict basic cosmological conjectures.

From Eqs. (19) and (21) we can express the parameter A and
the integration constant c in terms of the present density parame-
ters Ωdm ,

A = ±√
3 Ωdm√

Ω2
dm + 4Ωb

, (23)

c = ± 2
√

3Ωb√
Ω2

dm + 4Ωb

(24)

besides,

−w2ρ20 = 12ΩdeΩb

Ω2
dm + 4Ωb

. (25)

Finally the original problem of the interacting two-fluid mixture
governed by system equations (1), (2) is equivalent to an effective
model with a “three-fluid” mixture. So that, the effective dynami-
cal equations of our model read

3H2 = ρdm + ρde + ρb, (26)

ρ̇dm + 3H(1 + wdm)ρdm = 0, (27)

ρ̇de + 3H(1 + wde)ρde = 0, (28)

ρ̇b + 3Hρb = 0, (29)

where
ρdm = 3H0Ωdm(1 + z)3/2 H, (30)

ρde = 3H2
0Ωde(1 + z)3(1+λ), (31)

ρb = 3H2
0Ωb(1 + z)3, (32)

are the effective energy densities of dark and baryonic components
and

wde = 2Ωb

Ω2
dm + 4Ωb

[
−2 + Ωdm H0

H
(1 + z)3/2

]
, (33)

is the effective equation of state of the dark energy. Also, we find
the following relation:

wdm = 1

2

[
−1 + 3

A2
(1 + wde)

2
]
, (34)

between the effective equations of state of dark components. So
that, the knowledge of them determines the remaining ones in-
cluding w . To obtain the above effective dynamical equations of
the model we have taken into account that ρde ∝ ρ2. Hence, we
have identified the equation of conservation (6) with (28) to ex-
press, after using (8), the effective wde for dark energy in terms
of the observed density parameters, the present Hubble expansion
rate and the redshift parameter.

In our model the stationary solutions we = 0 at early times
and wl = wl

de = −1 + A2/3 at late times along with Eqs. (16) and

(34) lead to the stationary solutions we
de = −1 + A/

√
3, wl

de =
−1 + A2/3 and we

dm = 0, wl
dm = (−1 + A2/3)/2. As the observed

density parameter satisfies the condition Ω2
dm < 8Ωb , then A2 < 2

by using Eq. (23). In this case, we find that we
de is an unstable solu-

tion at early times and wl
de becomes asymptotically stable at late

times. Here, the evolution of the geometry represents a universe
that begins to evolve as it were matter-dominated at early times
and ends in an accelerated phase dominated by the dark energy
component. As the accelerated epoch begins at ä = 0 or w = −1/3,
the corresponding redshift is given by the expression

zacc = −1 +
[

Ωb

Ωde(
√

2 − A)2

]w(zacc)/3

. (35)

On the other hand, Eq. (33) allows us to find the elapsed time t0
from the creation

t0 = Ωdm

3Ωb H0

[√
3

A
− 1

]
, (36)

where we have used that the scale factor behaves as a ≈ a0(t/t0)
2/3,

at early times.

4. Observational constraints

In Ref. [15] it was used the recently published Hubble function
H(z) data [Simon, Verde and Jimenez (SVJ)] [16], extracted from
differential ages of passively evolving galaxies. This is interesting
for, among other reasons, the function is not integrated over, in
contrast to standard candle luminosity distances or standard ruler
angular diameter distances. Since the Hubble parameter depends
on the differential age of the Universe as a function of z in the
form H(z) = −(1 + z)−1 dz/dt , it can be directly measured through
a determination of dz/dt . In the procedure of calculating the differ-
ential ages, Simon et al. have employed the new released Gemini
Deep Deep Survey [17] and archival data [18,19] to determine the
9 numerical values of H(z) in the range 0 < z < 1.8, and their er-
rors [see Table 1]. These data will be inserted in our Eqs. (17) and
(18) to derive restrictions on the range of possible values for the
density parameters (19)–(21).
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Table 1
SVJ [16] Hubble parameter vs. redshift data

z H(z)
(km s−1 Mpc−1)

1σ
uncertainty

0.09 69 ±12
0.17 83 ±8.3
0.27 70 ±14
0.40 87 ±17.4
0.88 117 ±23.4
1.30 168 ±13.4
1.43 177 ±14.2
1.53 140 ±14
1.75 202 ±40.4

Fig. 1. Observational H(z) with 1σ uncertainties from SVJ [16] and the best fit the-
oretical H(z).

We adopt the prior H0 = 72 km s−1 Mpc−1 for H(z = 0). It is
exactly the mean value of the results from the Hubble Space Tele-
scope key project [20] and consistent with the one from WMAP
3-year result [21].

The parameters of the model can be determined by minimizing
the function

χ2(Ωdm,Ωde) =
9∑

i=1

[Hth(Ωdm,Ωde; zi) − Hob(zi)]2

σ 2(zi)
(37)

where

Hth(Ωdm,Ωde; zi)

= H0(1 + zi)
3/2

×
[

Ωdm

2
+

√(
1 − Ωdm

2

)2

+ Ωde
[
(1 + zi)

3(λ−1) − 1
]]

(38)

is the predicted value for the Hubble parameter, obtained from
Eq. (18), and λ is calculated from Eqs. (12) and (17). Hob is the
observed value of H at the redshift zi , σ 2 is the corresponding 1σ
uncertainty, and the summation is over the 9 observational H(zi)

data points at redshift zi [22]. Also, we adopt the prior Ωb = 0.05
[23].

We find a local minimum of χ2 for Ωdm = 0.345865 and Ωde =
0.606504 (χ2 = 8.69263) and present the observational H(z) data
in Fig. 1 with error bars and the theoretical line corresponding to
the best fit parameter. The Fig. 2 shows that the Universe begins
to accelerate on z ∼ 0.66. A similar result can be obtained from
�CDM flat cosmology when the density parameters are Ωm = 0.3
and Ω� = 0.7 [24]. In Fig. 3 we plot confidence regions in the
Ωdm–Ωde plane. The true values of those parameters are inside the
inner ellipse or between both ellipses with 68.3 or 95.4 percent of
probability respectively. In Fig. 4 we plot the equations of state
for dark matter wdm = pdm/ρdm , dark energy wde = pde/ρde and
overall fluid w = p/ρ . According to the previous stability analysis
predictions we see that the asymptotic behavior of the overall state
Fig. 2. Acceleration vs. redshift for the best fit model.

Fig. 3. The 1σ and 2σ confidence regions (inside and between the elliptic contours)
for Ωdm and Ωde from SVJ [16]. The cross is the best fit model. The straight line
corresponds to the flat cosmology making the separation between open and closed
universes.

Fig. 4. State parameters for dark matter, dark energy and overall fluid.

Fig. 5. Energy densities (in units of 3H2
0 ) vs. redshift z.
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Fig. 6. The age of the universe (in units of H−1
0 ). The solid line corresponds to our

model and the dashed line represents the �CDM one.

parameter varies from w ∼ 0 (near cold matter behavior) in the
far past to w = −1 + A2/3 ∼ −0.63 in the far future (dark energy
behavior). In Fig. 5 we show the energy densities corresponding to
the baryonic and dark components in terms of the redshift z.

We calculate the age of the universe (36) with the best fit pa-
rameters and find that t0 = 19.885 Gyr. In Fig. 6 we plot the time
elapsed (in units of H−1

0 ), since the initial singularity to present
days, for our model and the flat �CDM model, as a function of the
matter density. We also show the border t0 = 11 Gyr coming from
the bound of the oldest stellar ages. The age of the universe in this
coupled scenario tends to be much higher when compared with
the ACDM case [25]

5. Linear perturbations

Cosmological models with two interacting fluids have been in-
vestigated with the purpose of describe the evolution of dark com-
ponents. There the energy–momentum tensor of the interacting
components is not separately conserved. Usually these cosmologi-
cal model are presented with interacting matter species having a
non-constant equation of state parameter [26] or with DE having a
constant equation of state parameter coupled to DM [27,28]. How-
ever, in the model we are investigating the interaction between the
two fluids is setting by Eq. (6). For this choice the field equation
can be integrated, generalizing the case of quintessence driven by
the exponential potential. Then, it will be interesting to investigate
the evolution of the density perturbation.

In the synchronous gauge the line element is given by:

ds2 = a2(τ )
[−dτ 2 + (δi j + hij)dxi dx j], (39)

where the comoving coordinate are related to the proper time t
and position r by dτ = dt/a, dx = dr/a and hij is the metric per-
turbation. The scalar mode of hij is described by the two fields
h(k, τ ) and η(k, τ ) in the Fourier space,

hij(x, τ ) =
∫

d3k eik·x
[

k̂i k̂ jh +
(

k̂i k̂ j − 1

3
δi j

)
η

]
(40)

with k = kk̂. The Einstein equations to linear order in k-space,
expressed in terms of h and η, are given by the following four
equations [29]:

k2η − 1

2

a′

a
h′ = 4πGa2δT 0

0 , (41)

k2η′ = 4πGa2(ρ + p)θ, (42)

h′′ + 2
a′

a
h′ − 2k2η = −8πGa2δT i

i , (43)

h′′ + 6η′′ + 2
a′

(h′ + 6η′) − 2k2η = −24πGa2(ρ + p)σ . (44)

a

Here, the quantities θ and σ are defined as (ρ + p)θ = ik jδT 0
j ,

(ρ + p)σ = −(kik j − δi j/3)Σ i
j and Σ i

j = T i
j − δi

j T
k
k /3 denotes the

traceless component of the tensor T i
j . In addition, θ is the diver-

gence of the fluid velocity θ = ik j v j and ′ means d/dτ .
Let us consider a fluid moving with a small coordinate velocity

vi = dxi/dτ , then, vi can be treated as a perturbation of the same
order as energy density, pressure and metric perturbations. Hence,
to linear order in the perturbations, the energy–momentum tensor,
with vanishing anisotropic shear perturbation Σ i

j , is given by

T 0
0 = −(ρ + δρ), (45)

T 0
i = (ρ + p)vi = −T i

0, (46)

T i
j = (p + δp)δi

j . (47)

For a fluid with equation of state p = wρ , the perturbed part of
energy–momentum conservation equations T μν

;μ = 0 in the k-space
leads to the equations

δ′ = −(1 + w)

(
θ + h′

2

)
− 3H

(
δp

δρ
− w

)
δ, (48)

θ ′ = −H(1 − 3w)θ − w ′

1 + w
θ + δp/δρ

1 + w
k2δ, (49)

where δ = δρ/ρ and H = a′/a = aH = ȧ. Besides, using Eqs. (41),
(43), (45) and (47) we arrive at

h′′ +Hh′ + 3H2
(

1 + 3
δp

δρ

)
δ = 0. (50)

We have showed that our interacting two-fluid model can be
associated with an overall perfect fluid description based in an ef-
fective equation of state w = (w1ρ1 + w2ρ2)/(ρ1 +ρ2). Hence, we
investigate the asymptotic regimes at early and late times assum-
ing nearly constant equations of state w ≈ we = 0 and w ≈ wl =
−1 + A2/3 respectively.

At early time, when the overall fluid has w ≈ 0, the effective
fluid perturbations evolve similar to those of ordinary dust with
θ̇ = θ = 0, and from Eqs. (48)–(50) we obtain

δ̈ + 2H δ̇ − 3

2
H2δ = 0 (51)

and δ = c1t−1 + c2t2/3, where c1 and c2 are arbitrary integration
constants. In this dust-dominated era the perturbation grows as
δ ≈ a showing an initial unstable phase and compatible with the
observation that the primordial universe would have tiny perturba-
tions which seed the formation of structures in the later universe.

At late times, we are interested to find the evolution of the lin-
ear scalar perturbations for any mode k. To this end we write the
second order differential equation for the density perturbation δ

and the first order differential equation for the divergence of the
fluid velocity θ , evaluating them on the asymptotically stable equa-
tion of state w ≈ wl . In this case, from Eqs. (48)–(50) we get:

δ′′ +Hδ′ +
[

wlk2 − 3

2

(
1 + wl)(1 + 3wl)H2

]
δ

+ 3wl(1 + wl)Hθ = 0, (52)

θ ′ = −H
(
1 − 3wl)θ + wl

1 + wl
k2δ. (53)

Taking into account that in the late time regime the scale factor
behaves as a ∝ t2/3(1+wl) we can calculate the conformal time τ , a
and H = a′/a

τ ∝ t(1+3wl)/3(1+wl), (54)

a ∝ τ 2/(1+3wl), (55)

H = 2
l

. (56)

(1 + 3w )τ
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From Eqs. (52) and (53) the perturbation evolution becomes mode-
dependent with the k2/H2 term, and for low energy modes their
solutions can be obtained assuming a power law dependence of
the perturbations with the scale factor, δ ∝ an and θ ∝ as . In this
case the approximate solutions for wl = −1 + A2/3 = −0.63 are
given by

θ ≈ θ0

a2.89
, (57)

δ ≈ δ1

a0.55
+ δ2

a0.89
+ θ1

a3.33
, (58)

where θ0, δ1 and δ2 are integration constants while θ1 is a function
of θ0 and wl . This shows that the coupling to θ in Eq. (52) can
be neglected for all scales we are interested. Finally, expressing
Eq. (52) in term of conformal time we get

δ′′ + 2

1 + 3wl

δ′

τ
+

[
wk2 − 6

1 + wl

1 + 3wl

1

τ 2

]
δ = 0. (59)

The general solution of the latter equation in terms of the Bessel
functions is

δ = τ b[c1 Jν
(
k
√

wlτ
) + c2 J−ν

(
k
√

wlτ
)]

, (60)

with

b = −1 + 3wl

2(1 + 3wl)
, ν = ± 5 + 9wl

2(1 + 3wl)
. (61)

At late times, it can be approximated by the two first terms of
Eq. (58) showing that the energy density perturbation decreases
for large cosmological times for modes satisfying the condition
k2/H2 	 1. For high energy modes, k2/H2 
 1, the perturbation

δ ≈ 1

a0.5
, (62)

decreases but slowly that the low energy modes. This results can
be understood writing Eq. (52) as the equation of motion of a dis-
sipative mechanical system by using the analogy with the classical
potential problem

d

dτ

[
δ′ 2

2
+ V(δ)

]
= −D(δ, δ′), (63)

where

V(δ) = wlk2
(

1 − H2

H2
0

)
δ2

2
, (64)

D(δ, δ′) = 3

2

(
1 + wl)(1 + 3wl)HH′δ2 +Hδ′ 2, (65)

H2
0 = 2wlk2

3(1 + wl)(1 + 3wl)
. (66)

The potential V has an extreme at δ = 0, it is maximum for
H < H0 or a minimum for H > H0. On the other hand, assum-
ing that the perturbation depends on the scalar factor in the form
δ ∝ an , we find that D ≈ 0.08H3δ2 > 0. Hence, for any mode k
the perturbation begins to grow at early times for H < H0, while
at late times for H > H0, the function inside the square bracket
in Eq. (63) is a Liapunov function and the perturbation decreases
asymptotically reaching δ = 0 in the limit t → ∞.

6. Conclusions

We have shown an interacting two-fluid cosmological model
that allows us to reproduce the accelerated behavior of our uni-
verse and its probable age. The model gives rise to an exotic scalar
field dubbed exotic quintessence which reduces to quintessence
when one fluid is associated with stiff matter and the other with
vacuum energy. Setting the interaction between the two fluids by
Eq. (6), the field equation is integrated, generalizing the case of
quintessence driven by the exponential potential and, the equation
governing the scale factor (13) looks like a modified Friedmann
equation.

We have obtained the evolution equation for the overall equa-
tion of state of the model and showed the asymptotic behavior
of the scale factor, i.e., the universe begins from an unstable phase
dominated by the first fluid, a ≈ t2/3(1+w1) , and ends in a stable ex-
panding phase dominated by the exponential potential, a ≈ t2/A2

.
The latter becomes accelerated when the exponential potential
slope satisfy A2 < 2. Setting w1 = 0, the scale factor interpolates
between pressureless matter and dark energy phases.

Using the Hubble function H(z) data from Table 1 we minimize
the χ2 function (37), obtaining the best fit densities parameters
Ωdm = 0.346+0.054

−0.046 and Ωde = 0.606+0.014
−0.026 with a reduced χ2 =

1.24. These results are consistent with those found in the litera-
ture, see for instance Ref. [30] for null coupling (Ωdm = 0.37+0.06

−0.08)

or with the result obtained in Ref. [31], (Ωdm = 0.30+0.17
−0.07) through

mean relative peculiar velocity measurements for pairs of galax-
ies. With our best densities parameters and the priors for H0 =
72 km s−1 Mpc−1 and Ωb = 0.05, we obtain the theoretical H(z)
function, plotted together with the SVJ [16] experimental data in
Fig. 1. In Fig. 2 we plot the acceleration of the model as a function
of the redshift and find the transition from the non-accelerated
phase to the accelerated one around zacc = 0.66 [24]. Our value
agrees with the result obtained by a nearly model-independent
characterization of dark energy properties as a function of redshift
(zacc = 0.42+0.08

−0.06 [32]). The problem of why an accelerated expan-
sion should occur now in the long history of the universe seems
to be naturally dressed in our model. Considering the age of the
universe, we take into account that the age of the oldest stellar
objects have been constrained for instance, by using a distance-
independent method [33], (t0 = 13.5 ± 2 Gyr for Globular clusters
in the Milky Way) and the white dwarfs cooling sequence method
[34] (t = 12.7 ± 0.7 Gyr for the globular cluster M4). Then, the age
of universe needs to satisfy the lower bound t0 > 12–13 Gyr. This
condition is fulfilled by our model with t0 = 19.885 Gyr, as it can
be seen in Fig. 5.

The energy density perturbation of the model grows in the
first stage of the universe showing that initial instabilities in the
primordial universe could leads to the formation of structure in
the later universe. At late times we have found a Liapunov func-
tion which indicates that the perturbation decreases asymptotically
reaching δ = 0 in the limit t → ∞.
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