6,694 research outputs found

    Joint relay scheduling, channel access, and power allocation for green cognitive radio communications

    Get PDF
    PublishedJournal Article© 1983-2012 IEEE. The capacity of cognitive radio (CR) systems can be enhanced significantly by deploying relay nodes to exploit the spatial diversity. However, the inevitable imperfect sensing in CR has vital effects on the policy of relay selection, channel access, and power allocation that play pivotal roles in the system capacity. The increase in transmission power can improve the system capacity, but results in high energy consumption, which incurs the increase of carbon emission and network operational cost. Most of the existing schemes for CR systems have not jointly considered the imperfect sensing scenario and the tradeoff between the system capacity and energy consumption. To fill in this gap, this paper proposes an energy-aware centralized relay selection scheme that takes into account the relay selection, channel access, and power allocation jointly in CR with imperfect sensing. Specifically, the CR system is formulated as a partially observable Markov decision process (POMDP) to achieve the goal of balancing the system capacity and energy consumption as well as maximizing the system reward. The optimal policy for relay selection, channel access, and power allocation is then derived by virtue of a dynamic programming approach. A dimension reduction strategy is further applied to reduce its high computation complexity. Extensive simulation experiments and results are presented and analysed to demonstrate the significant performance improvement compared to the existing schemes. The performance results show that the received reward increases more than 50% and the network lifetime increases more than 35%, but the system capacity is reduced less than 6% only.This work was supported by the National Natural Science Foundation of China under Grants 61201219, 61171111, 61472150, and 61173045 and in part by the Fundamental Research Funds for the Central Universities under Grant 2013QN122

    Global behavior of cosmological dynamics with interacting Veneziano ghost

    Full text link
    In this paper, we shall study the dynamical behavior of the universe accelerated by the so called Veneziano ghost dark energy component locally and globally by using the linearization and nullcline method developed in this paper. The energy density is generalized to be proportional to the Hawking temperature defined on the trapping horizon instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the fate of the universe and present the bifurcation phenomenon of the dynamical system of the universe. It seems that the universe could be dominated by dark energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE

    Selective catalytic oxidation of ammonia over nano Cu/zeolites with different topologies

    Get PDF
    The selective catalytic oxidation of ammonia (NH3-SCO) is the last mitigation step in exhaust treatment using a 4-way catalytic converter to convert any excess and unreacted NH3 (that was used as a reductant of NOx) into environmentally benign N2 and H2O. Here, we report a series of highly reactive and selective nano Cu/zeolites for the NH3-SCO reaction. The NH3-SCO activity was found in the order nano Cu/ZSM-5 (MFI topology) > Cu/Beta (BEA) > Cu/MCM-49 (MWW) > Cu/Y (FAU) > Cu/Mordenite (MOR) > Cu/Ferrierite (FER). The best catalyst, i.e., nano Cu/ZSM-5, achieves 98% NH3 conversion at 250 °C with the N2 yield maintained at >98% even at up to 500 °C. When assessed under practical exhaust conditions in the presence of moisture (5% H2O) as well as that after hydrothermal aging (5% H2O, 850 °C, 8 h), the nano Cu/ZSM-5 exhibited only minor deactivation as a result of its good retention of Cu dispersion, pore structure and specific surface area. Furthermore, small micropore (10-membered ring, 10-MR) topologies were found to be crucial in maintaining high N2 yields. For Cu/Y and Cu/Mordenite, composed of 12-MR pores that are non-interconnected with smaller pores, their N2 yields were compromised by forming NOx at temperatures above 400 °C. Based on the in situ DRIFTS study, the iSCR mechanism appears to be applicable for all fresh and aged Cu/zeolites with the exception of fresh Cu/MCM-49 that follows the imide mechanism

    Versatile Preparation of Mesoporous Single-Layered Transition-Metal Sulfide/Carbon Composites for Enhanced Sodium Storage

    Get PDF
    Transition metal sulfides are promise electrochemical energy storage materials due to their abundant active sites, large inter-layer space and high theoretical capacities. Especially for sodium storage. However, the low conductivity and poor cycling stability at high current densities hampered their applications. Herein, we report a versatile dual-templates method to elaborate ordered mesoporous single layered MoS2 /carbon composite with high specific area, uniform pore size and large pore volume. The single layered MoS2 is confined in the carbon matrix. The mesopores between the composite nanorods provide fast electrolyte diffusion. The obtained nanocomposite shows a high sodium storage capability, excellent rate capacity, and very good cycling performance. A 310 mAh g-1 capacity can remains at 5.0 A g-1 after 2500 cycles. Furthermore, a SIB full cell composed the MoS2 /carbon composite anode and a Na3 V2 (PO4 )3 (NVP) cathode maintains a specific capacity of 330 mA h g-1 at 1.0 A g-1 during 100 cycles. The mechanism is investigated by in situ and ex situ characterizations as well as density functional theory (DFT) calculations. This article is protected by copyright. All rights reserved

    Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis

    Get PDF
    Increased glucose uptake mediated by glucose transporters and reliance on glycolysis are common features of malignant cells. Hypoxia-inducible factor-1α supports the adaptation of hypoxic cells by inducing genes related to glucose metabolism. The contribution of glucose transporter (GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to tumor behavior and their prognostic value in head and neck cancers remains unclear. The aim of this study was to examine the predictive value of GLUT1, GLUT3, and HIF-1α messenger RNA (mRNA)/protein expression as markers of tumor aggressiveness and prognosis in laryngeal cancer. The level of hypoxia/metabolic marker genes was determined in 106 squamous cell laryngeal cancer (SCC) and 73 noncancerous matched mucosa (NCM) controls using quantitative realtime PCR. The related protein levels were analyzed by Western blot. Positive expression of SLC2A1, SLC2A3, and HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer samples. Higher levels of mRNA/protein for GLUT1 and HIF-1α were noted in SCC compared to NCM (p<0.05). SLC2A1 was found to have a positive relationship with grade, tumor front grading (TFG) score, and depth and mode of invasion (p<0.05). SLC2A3 was related to grade and invasion type (p<0.05). There were also relationships of HIF-1α with pTNM, TFG scale, invasion depth and mode, tumor recurrences, and overall survival (p<0.05). In addition, more advanced tumors were found to be more likely to demonstrate positive expression of these proteins. In conclusion, the hypoxia/metabolic markers studied could be used as molecular markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory fund of the Department of Cytobiochemistry, University of Łódź, Poland (506/811), and by grant fromtheNational Science Council, Poland (N403 043 32/2326)

    Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration

    Get PDF
    Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis–infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB

    Screening for atrial fibrillation – a cross-sectional survey of healthcare professionals in primary care

    Get PDF
    Introduction: Screening for atrial fibrillation (AF) in primary care has been recommended; however, the views of healthcare professionals (HCPs) are not known. This study aimed to determine the opinions of HCP about the feasibility of implementing screening within a primary care setting. Methods: A cross-sectional mixed methods census survey of 418 HCPs from 59 inner-city practices (Nottingham, UK) was conducted between October-December 2014. Postal and web-surveys ascertained data on existing methods, knowledge, skills, attitudes, barriers and facilitators to AF screening using Likert scale and open-ended questions. Responses, categorized according to HCP group, were summarized using proportions, adjusting for clustering by practice, with 95% C.Is and free-text responses using thematic analysis. Results: At least one General Practitioner (GP) responded from 48 (81%) practices. There were 212/418 (51%) respondents; 118/229 GPs, 67/129 nurses [50 practice nurses; 17 Nurse Practitioners (NPs)], 27/60 healthcare assistants (HCAs). 39/48 (81%) practices had an ECG machine and diagnosed AF in-house. Non-GP HCPs reported having less knowledge about ECG interpretation, diagnosing and treating AF than GPs. A greater proportion of non-GP HCPs reported they would benefit from ECG training specifically for AF diagnosis than GPs [proportion (95% CI) GPs: 11.9% (6.8–20.0); HCAs: 37.0% (21.7–55.5); nurses: 44.0% (30.0–59.0); NPs 41.2% (21.9–63.7)]. Barriers included time, workload and capacity to undertake screening activities, although training to diagnose and manage AF was a required facilitator. Conclusion: Inner-city general practices were found to have adequate access to resources for AF screening. There is enthusiasm by non-GP HCPs to up-skill in the diagnosis and management of AF and they may have a role in future AF screening. However, organisational barriers, such as lack of time, staff and capacity, should be overcome for AF screening to be feasibly implemented within primary care

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between \sim 10 ^{\circ} and \sim 30 ^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195195^{\circ}\leq R.A. 315\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors

    Get PDF
    We investigate the application of hierarchical classification schemes to the annotation of gene function based on several characteristics of protein sequences including phylogenic descriptors, sequence based attributes, and predicted secondary structure. We discuss three Bayesian models and compare their performance in terms of predictive accuracy. These models are the ordinary multinomial logit (MNL) model, a hierarchical model based on a set of nested MNL models, and a MNL model with a prior that introduces correlations between the parameters for classes that are nearby in the hierarchy. We also provide a new scheme for combining different sources of information. We use these models to predict the functional class of Open Reading Frames (ORFs) from the E. coli genome. The results from all three models show substantial improvement over previous methods, which were based on the C5 algorithm. The MNL model using a prior based on the hierarchy outperforms both the non-hierarchical MNL model and the nested MNL model. In contrast to previous attempts at combining these sources of information, our approach results in a higher accuracy rate when compared to models that use each data source alone. Together, these results show that gene function can be predicted with higher accuracy than previously achieved, using Bayesian models that incorporate suitable prior information
    corecore