38 research outputs found

    The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype

    Get PDF
    Cellular senescence is a stress response program characterized by a robust cell cycle arrest and the induction of a proinflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that, during oncogene-induced senescence (OIS), the Toll-like receptor 2 (TLR2) and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumor suppressors p53-p21 , p16 , and p15 and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAAs) that, in turn, function as the damage-associated molecular patterns (DAMPs) signaling through TLR2 in OIS. Last, we found evidence that the cGAS-STING cytosolic DNA sensing pathway primes TLR2 and A-SAAs expression in OIS. In summary, we report that innate immune sensing of senescence-associated DAMPs by TLR2 controls the SASP and reinforces the cell cycle arrest program in OIS

    The role of cord blood IGF-I levels in preterm osteopenia

    No full text
    Objective: Osteopenia is a frequent condition in preterm infants. This prospective study was designed to assess the relationship between cord blood insulin-like growth factor-I (IGF-I) levels and bone mineralization in healthy premature infants
    corecore