32 research outputs found

    Reliability and Validity of the Dutch Version of the Brief Infant-Toddler Social and Emotional Assessment (BITSEA)

    Get PDF
    Background: The Brief Infant-Toddler Social and Emotional Assessment (BITSEA) is a relatively new and short (42-item) questionnaire that measures psychosocial problems in toddlers and consists of a Problem and a Competence scale. In this study the reliability and validity of the Dutch version of the BITSEA were examined for the whole group and for gender and ethnicity subgroups. Methods: Parents of 7140 two-year-old children were invited in the study, of which 3170 (44.4%) parents completed the BITSEA. For evaluation of the score distribution, the presence of floor/ceiling effects was determined. The internal consistency (Cronbach's alpha) was evaluated and in subsamples the test-retest, parent-childcare provider interrater reliability and concurrent validity with regard to the Child Behavioral Checklist (CBCL). Discriminative validity was evaluated by comparing scores of parents that worry and parents that do not worry about their child's development. Results: The BITSEA showed no floor or ceiling effects. Psychometric properties of the BITSEA Problem and Competence scale were respectively: Cronbach's alphas were 0.76 and 0.63. Test-retest correlations were 0.75 and 0.61. Interrater reliability correlations were 0.30 and 0.17. Concurrent validity was as hypothesised. The BITSEA was able to discriminate between parents that worry about their child and parents that do not worry. The psychometric properties of the BITSEA were comparable across gender and ethnic background. Conclusion: The results in this large-scale study of a diverse sample support the reliability and validity of the BITSEA Problem scale. The BITSEA Competence scale needs further study. The performance of the BITSEA appears to be similar in subgroups by gender and ethnic background

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Sulfur bacteria in sediments of two coastal ecosystems: the Bassin d'Arcachon and the Etang du Prévost, France

    No full text
    Enumeration of the functional groups of sulfur bacteria was performed in the sediments in the Bassin d'Arcachon, a mesotidal lagoon with strong tidal currents and dominant populations of seagrass (Zostera noltii), and in the Etang du Prevost, a shallow lagoon with moderate tidal fluctuations and dominant populations of floating seaweed (Ulva sp.). In addition, data were collected on the distribution of oxygen and sulfide at the water-sediment interface during diel cycles. Bacterial enumeration studies revealed highest numbers in the top two cm of the sediments for three functional groups of sulfur bacteria, these being the sulfate-reducing bacteria (SRB), the colorless sulfur bacteria (CSB), and the phototrophic sulfur bacteria (PSB). In both systems high numbers of SRB were encountered, suggesting ample availability of organic matter. A comparison between different sites in each ecosystem showed that sediments overlain by more stagnant water were dominated by PSB, whereas those overlain by more oxygenated water were dominated by CSB. Important factors are the physical forces induced by tidal currents and the degree of daily exchange of water between the lagoons and the sea. These factors may explain the differences observed between the two systems with regard to the development of anoxic conditions, more so than the level of eutrophication. It appears that rooted plants play an important role in the introduction of oxygen into the sediments, thus enhancing the competitive position of CSB compared to PSB. Mini-electrodes studies revealed high concentrations of free sulfide at the inner site of the Etang du Prevost but very low concentrations at the inner station of the Bassin d'Arcachon, which may be explained by the high iron input of the latter rather than by differences in the rate of sulfide production

    Symbiosis insights through metagenomic analysis of a microbial consortium

    Get PDF
    Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits
    corecore