4,386 research outputs found
Biomineralization mediated by anaerobic methane-consuming cell consortia
published_or_final_versio
Oxidative stress-dependent cyclooxygenase-2-derived prostaglandin F2α impairs endothelial function in renovascular hypertensive rats
Abstract Aims: The role of endothelium-derived contracting factors (EDCFs) in regulating renovascular function is yet to be elucidated in renovascular hypertension (RH). The current study investigated whether oxidative stress-dependent cyclooxygenase (COX)-2-derived prostaglandin F(2alpha) (PGF(2alpha)) impairs endothelial function in renal arteries of renovascular hypertensive rats (RHR). Results: Renal hypertension was induced in rats by renal artery stenosis of both kidneys using the 2-kidney 2-clip model. Acute treatment with reactive oxygen species (ROS) scavengers, COX-2 inhibitors, and thromboxane-prostanoid receptor antagonists, but not COX-1 inhibitors, improved endothelium-dependent relaxations and eliminated endothelium-dependent contractions in RHR renal arteries. Five weeks of treatment with celecoxib or tempol reduced blood pressure, increased renal blood flow, and restored endothelial function in RHRs. Increased ROS production in RHR arteries was inhibited by ROS scavengers, but unaffected by COX-2 inhibitors; whereas increased PGF(2alpha) release was reduced by both ROS scavengers and COX-2 inhibitors. ROS also induced COX-2-dependent contraction in RHR renal arteries, which was accompanied by the release of COX-2-derived PGF(2alpha). Further, chronic tempol treatment reduced COX-2 and BMP4 upregulation, p38MAPK phosphorylation, and the nitrotyrosine level in RHR renal arteries. Conclusion: These findings demonstrate the functional importance of oxidative stress, which serves as an initiator of increased COX-2 activity, and that COX-2-derived PGF(2alpha) plays an important role in mediating endothelial dysfunction in RH. Innovation: The current study, thus, suggests that drugs targeting oxidative stress-dependent COX-2-derived PGF(2alpha) may be useful in the prevention and management of RH. Antioxid. Redox Signal. 16, 363-373.published_or_final_versio
Composite structural motifs of binding sites for delineating biological functions of proteins
Most biological processes are described as a series of interactions between
proteins and other molecules, and interactions are in turn described in terms
of atomic structures. To annotate protein functions as sets of interaction
states at atomic resolution, and thereby to better understand the relation
between protein interactions and biological functions, we conducted exhaustive
all-against-all atomic structure comparisons of all known binding sites for
ligands including small molecules, proteins and nucleic acids, and identified
recurring elementary motifs. By integrating the elementary motifs associated
with each subunit, we defined composite motifs which represent
context-dependent combinations of elementary motifs. It is demonstrated that
function similarity can be better inferred from composite motif similarity
compared to the similarity of protein sequences or of individual binding sites.
By integrating the composite motifs associated with each protein function, we
define meta-composite motifs each of which is regarded as a time-independent
diagrammatic representation of a biological process. It is shown that
meta-composite motifs provide richer annotations of biological processes than
sequence clusters. The present results serve as a basis for bridging atomic
structures to higher-order biological phenomena by classification and
integration of binding site structures.Comment: 34 pages, 7 figure
A Single-Arm, Proof-Of-Concept Trial of Lopimune (Lopinavir/Ritonavir) as a Treatment for HPV-Related Pre-Invasive Cervical Disease
BACKGROUND:
Cervical cancer is the most common female malignancy in the developing nations and the third most common cancer in women globally. An effective, inexpensive and self-applied topical treatment would be an ideal solution for treatment of screen-detected, pre-invasive cervical disease in low resource settings.
METHODS:
Between 01/03/2013 and 01/08/2013, women attending Kenyatta National Hospital's Family Planning and Gynaecology Outpatients clinics were tested for HIV, HPV (Cervista®) and liquid based cervical cytology (LBC -ThinPrep®). HIV negative women diagnosed as high-risk HPV positive with high grade squamous intraepithelial lesions (HSIL) were examined by colposcopy and given a 2 week course of 1 capsule of Lopimune (CIPLA) twice daily, to be self-applied as a vaginal pessary. Colposcopy, HPV testing and LBC were repeated at 4 and 12 weeks post-start of treatment with a final punch biopsy at 3 months for histology. Primary outcome measures were acceptability of treatment with efficacy as a secondary consideration.
RESULTS:
A total of 23 women with HSIL were treated with Lopimune during which time no adverse reactions were reported. A maximum concentration of 10 ng/ml of lopinavir was detected in patient plasma 1 week after starting treatment. HPV was no longer detected in 12/23 (52.2%, 95%CI: 30.6-73.2%). Post-treatment cytology at 12 weeks on women with HSIL, showed 14/22 (63.6%, 95%CI: 40.6-82.8%) had no dysplasia and 4/22 (18.2%, 95%CI: 9.9-65.1%) were now low grade demonstrating a combined positive response in 81.8% of women of which 77.8% was confirmed by histology. These data are supported by colposcopic images, which show regression of cervical lesions.
CONCLUSIONS:
These results demonstrate the potential of Lopimune as a self-applied therapy for HPV infection and related cervical lesions. Since there were no serious adverse events or detectable post-treatment morbidity, this study indicates that further trials are clearly justified to define optimal regimes and the overall benefit of this therapy.
TRIAL REGISTRATION:
ISRCTN Registry 48776874
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}
Distinguishing Asthma Phenotypes Using Machine Learning Approaches.
Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies
Quantum physics in inertial and gravitational fields
Covariant generalizations of well-known wave equations predict the existence
of inertial-gravitational effects for a variety of quantum systems that range
from Bose-Einstein condensates to particles in accelerators. Additional effects
arise in models that incorporate Born reciprocity principle and the notion of a
maximal acceleration. Some specific examples are discussed in detail.Comment: 25 pages,1 figure,to appear in "Relativity in Rotating Frame
Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen
Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines
Structure of hadron resonances with a nearby zero of the amplitude
We discuss the relation between the analytic structure of the scattering
amplitude and the origin of an eigenstate represented by a pole of the
amplitude.If the eigenstate is not dynamically generated by the interaction in
the channel of interest, the residue of the pole vanishes in the zero coupling
limit. Based on the topological nature of the phase of the scattering
amplitude, we show that the pole must encounter with the
Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the
dynamical component of the eigenstate is small if a CDD zero exists near the
eigenstate pole. We show that the line shape of the resonance is distorted from
the Breit-Wigner form as an observable consequence of the nearby CDD zero.
Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma
amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio
A multi-perspective dynamic feature concept in adaptive NC machining of complex freeform surfaces
This paper presents a new concept of feature for freeform surface machining that defines the changes in feature status during real manufacturing situations which have not been sufficiently addressed by current international standards and previous research in feature technology. These changes are multi-perspective, including (i) changes in depth-of-cut: the geometry of a feature in the depth-of-cut direction changes during different machining operations such as roughing, semi-finishing and finishing; (ii) changes across the surface: a surface may be divided into different machining regions (effectively sub-features) for the selection of appropriate manufacturing methods for each region such as different cutting tools, parameters, set-ups or machine tools; and (iii) changes in resources or manufacturing capabilities may require the re-planning of depth-of-cuts, division of machining regions and manufacturing operations (machines, tools, set-ups and parameters). Adding the above dynamic information to the part information models in current CAD systems (which only represent the final state of parts) would significantly improve the accuracy, efficiency and timeliness of manufacturing planning and optimisation, especially for the integrated NC machining planning for complex freeform surfaces. A case study in an aircraft manufacturing company will be included in this paper
- …
